IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8755-d1158562.html
   My bibliography  Save this article

Sodium Hydroxide Hydrothermal Extraction of Lignin from Rice Straw Residue and Fermentation to Biomethane

Author

Listed:
  • Tawaf Ali Shah

    (National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad 44000, Punjab, Pakistan)

  • Sabiha Khalid

    (Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore 54600, Punjab, Pakistan)

  • Hiba-Allah Nafidi

    (Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada)

  • Ahmad Mohammad Salamatullah

    (Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Mohammed Bourhia

    (Laboratory of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco)

Abstract

The purpose of the NaOH pretreatment of rice straw with a recycling strategy was to enhance the economic efficiency of producing biomethane. Anaerobic digestion is used for converting rice straw into biogas. In this work, 5% NaOH and rice straw mixed samples were autoclaved at 121 °C for 20 min for lignin removal. The NaOH black liquor was separated using filtration for the subsequent treatment cycle. The NaOH liquor was utilized in one more subsequent recycling procedure to test its ability to remove lignin from the rice straw. The 5% NaOH treatment results in a reduction in rice straw (RC) lignin of 73.6%. The lignin content of the recycled NaOH-filtrated rice straw samples (RCF1) was reduced by 55.5%. The 5% NaOH-treated rice straw sample yields a total cumulative biogas of 1452.4 mL/gVS, whereas the recycled NaOH-filtered (RCF1) samples generate 1125.2 mL/gVS after 30 days of incubation. However, after 30 days of incubation, the untreated rice straw (RCC) bottle produced a total of 285.5 mL/gVS of biogas. The total increase in methane output after NaOH treatment is 6–8 times greater, and the biogas yield improves by 80–124%. We show here that the recycled NaOH black solution has still the effectiveness to be used for successive pretreatment cycles to remove lignin and generate methane. In the meantime, the NaOH black solution contains useful materials (lignin, sugars, potassium, and nitrogen) that could be purified for commercial purposes, and more importantly recycling the NaOH solution decrease the chances of environmental pollution. Thus, recycling NaOH decreased chemical consumption, which would provide net benefits instead of using fresh NaOH solution, had a lower water consumption, and provided the prospect of producing an optimum yield of methane in anaerobic digestion. This method will decrease the chemical treatment costs for biomass pretreatment prior to anaerobic digestion. Recycling of NaOH solution and the integration of pretreatment reactors could be a novel bioprocessing addition to the current technology.

Suggested Citation

  • Tawaf Ali Shah & Sabiha Khalid & Hiba-Allah Nafidi & Ahmad Mohammad Salamatullah & Mohammed Bourhia, 2023. "Sodium Hydroxide Hydrothermal Extraction of Lignin from Rice Straw Residue and Fermentation to Biomethane," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8755-:d:1158562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8755/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Verónica Hidalgo-Sánchez & Uwe Behmel & Josef Hofmann & María Emma Borges, 2023. "Enhancing Biogas Production of Co-Digested Cattle Manure with Grass Silage from a Local Farm in Landshut, Bavaria, through Chemical and Mechanical Pre-Treatment and Its Impact on Biogas Reactor Hydrau," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
    2. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    3. Can Cui & Cancan Yan & Ailin Wang & Cui Chen & Dan Chen & Shiwei Liu & Lu Li & Qiong Wu & Yue Liu & Yuxiang Liu & Genkuo Nie & Xiaoqing Jiang & Shuangxi Nie & Shuangquan Yao & Hailong Yu, 2023. "Understanding the Inhibition Mechanism of Lignin Adsorption to Cellulase in Terms of Changes in Composition and Conformation of Free Enzymes," Sustainability, MDPI, vol. 15(7), pages 1-12, March.
    4. Dejene Tsegaye & Mohammed Mazharuddin Khan & Seyoum Leta, 2023. "Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    5. Siti Norliyana Harun & Marlia Mohd Hanafiah & Noorashikin Md Noor, 2022. "Rice Straw Utilisation for Bioenergy Production: A Brief Overview," Energies, MDPI, vol. 15(15), pages 1-17, July.
    6. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siswo Sumardiono & Bakti Jos & Agata Advensia Eksa Dewanti & Isa Mahendra & Heri Cahyono, 2021. "Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions," Energies, MDPI, vol. 14(15), pages 1-15, August.
    2. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    3. Tera, Ibrahim & Zhang, Shengan & Liu, Guilian, 2024. "A conceptual hydrogen, heat and power polygeneration system based on biomass gasification, SOFC and waste heat recovery units: Energy, exergy, economic and emergy (4E) assessment," Energy, Elsevier, vol. 295(C).
    4. Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
    5. Scherzinger, Marvin & Kaltschmitt, Martin, 2021. "Thermal pre-treatment options to enhance anaerobic digestibility – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Jin, Xianchun & Ma, Jiangshan & Song, Jianing & Liu, Gao-Qiang, 2021. "Promoted bioethanol production through fed-batch semisimultaneous saccharification and fermentation at a high biomass load of sodium carbonate-pretreated rice straw," Energy, Elsevier, vol. 226(C).
    7. Barik, Debabrata & Murugan, S., 2014. "Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode," Energy, Elsevier, vol. 72(C), pages 760-771.
    8. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Sambusiti, C. & Ficara, E. & Malpei, F. & Steyer, J.P. & Carrère, H., 2013. "Effect of sodium hydroxide pretreatment on physical, chemical characteristics and methane production of five varieties of sorghum," Energy, Elsevier, vol. 55(C), pages 449-456.
    10. Pedro F Souza Filho & Akram Zamani & Jorge A Ferreira, 2020. "Valorization of Wheat Byproducts for the Co-Production of Packaging Material and Enzymes," Energies, MDPI, vol. 13(6), pages 1-14, March.
    11. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    12. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    13. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Simioni, Taysnara & Agustini, Caroline Borges & Dettmer, Aline & Gutterres, Mariliz, 2022. "Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw," Energy, Elsevier, vol. 253(C).
    15. Reckson Kamusoko & Patrick Mukumba, 2024. "Potential of Wheat Straw for Biogas Production by Anaerobic Digestion in South Africa: A Review," Energies, MDPI, vol. 17(18), pages 1-20, September.
    16. Liu, Tian & Wang, Peipei & Tian, Jing & Guo, Jiaqi & Zhu, Wenyuan & Bushra, Rani & Huang, Caoxing & Jin, Yongcan & Xiao, Huining & Song, Junlong, 2024. "Emerging role of additives in lignocellulose enzymatic saccharification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    17. Ghosh, Shiladitya & Chowdhury, Ranjana & Bhattacharya, Pinaki, 2017. "Sustainability of cereal straws for the fermentative production of second generation biofuels: A review of the efficiency and economics of biochemical pretreatment processes," Applied Energy, Elsevier, vol. 198(C), pages 284-298.
    18. Muhammad Usman Khan & Birgitte Kiaer Ahring, 2021. "Anaerobic Biodegradation of Wheat Straw Lignin: The Influence of Wet Explosion Pretreatment," Energies, MDPI, vol. 14(18), pages 1-11, September.
    19. Tomasz Jóźwiak & Urszula Filipkowska & Paulina Walczak, 2022. "The Use of Aminated Wheat Straw for Reactive Black 5 Dye Removal from Aqueous Solutions as a Potential Method of Biomass Valorization," Energies, MDPI, vol. 15(17), pages 1-19, August.
    20. Md Amir Suhail & Sandeep Shrivastava & Kunwar Paritosh & Nidhi Pareek & Andrey A. Kovalev & Dmitriy A. Kovalev & Yuri V. Litti & Vladimir Panchenko & Vadim Bolshev & Vivekanand Vivekanand, 2022. "Advances in Applications of Cereal Crop Residues in Green Concrete Technology for Environmental Sustainability: A Review," Agriculture, MDPI, vol. 12(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8755-:d:1158562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.