IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v61y2013icp6-12.html
   My bibliography  Save this article

Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands

Author

Listed:
  • Melts, Indrek
  • Heinsoo, Katrin
  • Nurk, Liina
  • Pärn, Linnar

Abstract

Semi-natural grasslands are characterized by high biodiversity and can be maintained only with continuous management. In current situation, without sufficient demand for these biomass as cattle fodder, this source can be used for bioenergy production. In Estonia the largest average annual dry biomass yield per area was achieved in alluvial meadows (5.5 t ha−1) and the lowest in wooded meadows (1.9 t ha−1). Chemical characteristics of herbaceous biomass from wooded meadows differed from mesic and alluvial meadows resulting in the highest values of N, Ca, K, Mg and ash (1.3%, 2.4%, 0.3%, 10.9% and 9.5% of the dry matter, respectively) and lower ash softening temperature (1161 °C). The energy potential for combustion was estimated to be 102, 53 and 34 GJ ha−1 y−1 for alluvial, mesic and wooded meadows, respectively. The highest feedstock-specific methane yield can be produced from the biomass of wooded meadows (299 lN CH4 kg−1 VS (volatile solids)) and the lowest from alluvial meadows (269 lN CH4 kg−1 VS). The area-specific methane yield was obtained from 514 for wooded to 1375 m3 CH4 ha−1 for alluvial meadows that corresponds to 20 and 55 GJ ha−1. Via biogas production it is possible to achieve less than 60% of energy available for combustion.

Suggested Citation

  • Melts, Indrek & Heinsoo, Katrin & Nurk, Liina & Pärn, Linnar, 2013. "Comparison of two different bioenergy production options from late harvested biomass of Estonian semi-natural grasslands," Energy, Elsevier, vol. 61(C), pages 6-12.
  • Handle: RePEc:eee:energy:v:61:y:2013:i:c:p:6-12
    DOI: 10.1016/j.energy.2013.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213005148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chandra, R. & Takeuchi, H. & Hasegawa, T. & Kumar, R., 2012. "Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments," Energy, Elsevier, vol. 43(1), pages 273-282.
    2. Wetterlund, Elisabeth & Leduc, Sylvain & Dotzauer, Erik & Kindermann, Georg, 2012. "Optimal localisation of biofuel production on a European scale," Energy, Elsevier, vol. 41(1), pages 462-472.
    3. Fahd, S. & Fiorentino, G. & Mellino, S. & Ulgiati, S., 2012. "Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept," Energy, Elsevier, vol. 37(1), pages 79-93.
    4. Steubing, B. & Zah, R. & Waeger, P. & Ludwig, C., 2010. "Bioenergy in Switzerland: Assessing the domestic sustainable biomass potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2256-2265, October.
    5. Ericsson, Karin, 2007. "Co-firing—A strategy for bioenergy in Poland?," Energy, Elsevier, vol. 32(10), pages 1838-1847.
    6. Ferraro, Diego Omar, 2012. "Energy use in cropping systems: A regional long-term exploratory analysis of energy allocation and efficiency in the Inland Pampa (Argentina)," Energy, Elsevier, vol. 44(1), pages 490-497.
    7. Lu, Hongfang & Lin, Bin-Le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2012. "Biofuel vs. biodiversity? Integrated emergy and economic cost-benefit evaluation of rice-ethanol production in Japan," Energy, Elsevier, vol. 46(1), pages 442-450.
    8. Song, Han & Dotzauer, Erik & Thorin, Eva & Guziana, Bozena & Huopana, Tuomas & Yan, Jinyue, 2012. "A dynamic model to optimize a regional energy system with waste and crops as energy resources for greenhouse gases mitigation," Energy, Elsevier, vol. 46(1), pages 522-532.
    9. Gurung, Anup & Van Ginkel, Steven W. & Kang, Woo-Chang & Qambrani, Naveed Ahmed & Oh, Sang-Eun, 2012. "Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study," Energy, Elsevier, vol. 43(1), pages 396-401.
    10. Zhou, Shuxia & Zhang, Yulin & Dong, Yuping, 2012. "Pretreatment for biogas production by anaerobic fermentation of mixed corn stover and cow dung," Energy, Elsevier, vol. 46(1), pages 644-648.
    11. Zhou, Xinping & Xiao, Bo & Ochieng, Reccab M. & Yang, Jiakuan, 2009. "Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 479-485, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. French, Katherine E., 2019. "Assessing the bioenergy potential of grassland biomass from conservation areas in England," Land Use Policy, Elsevier, vol. 82(C), pages 700-708.
    2. Mariusz Jerzy Stolarski & Paweł Dudziec & Michał Krzyżaniak & Ewelina Olba-Zięty, 2021. "Solid Biomass Energy Potential as a Development Opportunity for Rural Communities," Energies, MDPI, vol. 14(12), pages 1-21, June.
    3. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    2. Yao, Yiqing & Luo, Yang & Yang, Yingxue & Sheng, Hongmei & Li, Xiangkai & Li, Tian & Song, Yuan & Zhang, Hua & Chen, Shuyan & He, Wenliang & He, Mulan & Ren, Yubing & Gao, Jiangli & Wei, Yali & An, Li, 2014. "Water free anaerobic co-digestion of vegetable processing waste with cattle slurry for methane production at high total solid content," Energy, Elsevier, vol. 74(C), pages 309-313.
    3. Hassan, Muhammad & Ding, Weimin & Umar, Muhammad & Hei, Kunlun & Bi, Jinhua & Shi, Zhendan, 2017. "Methane enhancement and asynchronism minimization through co-digestion of goose manure and NaOH solubilized corn stover with waste activated sludge," Energy, Elsevier, vol. 118(C), pages 1256-1263.
    4. Dong, Feiqing & Lu, Jianbo, 2013. "Using solar energy to enhance biogas production from livestock residue – A case study of the Tongren biogas engineering pig farm in South China," Energy, Elsevier, vol. 57(C), pages 759-765.
    5. Royo, Javier & Sebastián, Fernando & García-Galindo, Daniel & Gómez, Maider & Díaz, Maryori, 2012. "Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case," Energy, Elsevier, vol. 48(1), pages 255-267.
    6. Khatri, Shailendra & Wu, Shubiao & Kizito, Simon & Zhang, Wanqin & Li, Jiaxi & Dong, Renjie, 2015. "Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw," Applied Energy, Elsevier, vol. 158(C), pages 55-64.
    7. Krishania, M. & Vijay, V.K. & Chandra, R., 2013. "Methane fermentation and kinetics of wheat straw pretreated substrates co-digested with cattle manure in batch assay," Energy, Elsevier, vol. 57(C), pages 359-367.
    8. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    9. Rouches, E. & Herpoël-Gimbert, I. & Steyer, J.P. & Carrere, H., 2016. "Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 179-198.
    10. Shi, Yi & Deng, Yawen & Wang, Guoan & Xu, Jiuping, 2020. "Stackelberg equilibrium-based eco-economic approach for sustainable development of kitchen waste disposal with subsidy policy: A case study from China," Energy, Elsevier, vol. 196(C).
    11. Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.
    12. Patrizio, P. & Leduc, S. & Chinese, D. & Kraxner, F., 2017. "Internalizing the external costs of biogas supply chains in the Italian energy sector," Energy, Elsevier, vol. 125(C), pages 85-96.
    13. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    14. Franklin B. Martínez & Francisco Guevara & Carlos E. Aguilar & René Pinto & Manuel A. La O & Luis A. Rodríguez & Deb R. Aryal, 2020. "Energy and Economic Efficiency of Maize Agroecosystem under Three Management Strategies in the Frailesca, Chiapas (Mexico)," Agriculture, MDPI, vol. 10(3), pages 1-15, March.
    15. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    16. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    17. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    18. Zhang, Jingxin & Li, Wangliang & Lee, Jonathan & Loh, Kai-Chee & Dai, Yanjun & Tong, Yen Wah, 2017. "Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment," Energy, Elsevier, vol. 137(C), pages 479-486.
    19. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    20. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:61:y:2013:i:c:p:6-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.