IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8495-d1154121.html
   My bibliography  Save this article

Blockchain’s Scope and Purpose in Carbon Markets: A Systematic Literature Review

Author

Listed:
  • Arsenii Vilkov

    (College of Economics and Management, Northeast Forestry University, Harbin 150040, China)

  • Gang Tian

    (College of Economics and Management, Northeast Forestry University, Harbin 150040, China)

Abstract

Carbon markets, particularly emission trading schemes (ETS) and carbon offset projects, are significant mechanisms in climate change mitigation. However, there are still a number of unresolved issues regarding their attractiveness and efficient functioning. Blockchain, as the core of “3D’s concept” (including decentralization, decarbonization and digitalization), could be considered as a candidate solution for carbon markets’ improvement. A systematic literature review was conducted to identify the role of blockchain in ETS and carbon offset projects, its key features, implementation challenges and proposed applications, by analyzing and discussing the content of relevant studies, and grouping the results into domains. This study’s findings show that blockchain has great potential to be adopted in carbon markets. However, there is no data on blockchain use cases in energy efficiency, chemical processes and industrial manufacturing, waste disposal, and agriculture. Blockchain-based household and transportation carbon offset projects are linked to renewables through energy trading. Renewables and forestry are the most appropriate domains for blockchain adoption, considering various criteria of quality for carbon offset projects. Blockchain is currently immature in carbon markets because of its own drawbacks and challenges. This study also highlights research gaps and offers research directions to inspire researchers for conducting related investigations.

Suggested Citation

  • Arsenii Vilkov & Gang Tian, 2023. "Blockchain’s Scope and Purpose in Carbon Markets: A Systematic Literature Review," Sustainability, MDPI, vol. 15(11), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8495-:d:1154121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cramton, Peter & Kerr, Suzi, 2002. "Tradeable carbon permit auctions: How and why to auction not grandfather," Energy Policy, Elsevier, vol. 30(4), pages 333-345, March.
    2. Mason, Charles F. & Plantinga, Andrew J., 2013. "The additionality problem with offsets: Optimal contracts for carbon sequestration in forests," Journal of Environmental Economics and Management, Elsevier, vol. 66(1), pages 1-14.
    3. Riya Kakkar & Rajesh Gupta & Smita Agrawal & Pronaya Bhattacharya & Sudeep Tanwar & Maria Simona Raboaca & Fayez Alqahtani & Amr Tolba, 2022. "Blockchain and Double Auction-Based Trustful EVs Energy Trading Scheme for Optimum Pricing," Mathematics, MDPI, vol. 10(15), pages 1-24, August.
    4. Zhenya Ji & Zishan Guo & Hao Li & Qi Wang, 2021. "Automated Scheduling Approach under Smart Contract for Remote Wind Farms with Power-to-Gas Systems in Multiple Energy Markets," Energies, MDPI, vol. 14(20), pages 1-17, October.
    5. Timothy N. Cason & Frans P. Vries, 2019. "Dynamic Efficiency in Experimental Emissions Trading Markets with Investment Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 1-31, May.
    6. Rahel Mandaroux & Chuanwen Dong & Guodong Li, 2021. "A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    7. Assunta Di Vaio & Anum Zaffar & Daniel Balsalobre-Lorente & Antonio Garofalo, 2023. "Decarbonization technology responsibility to gender equality in the shipping industry: a systematic literature review and new avenues ahead," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-20, December.
    8. Rui Sun & Dayi He & Jingjing Yan & Li Tao, 2021. "Mechanism Analysis of Applying Blockchain Technology to Forestry Carbon Sink Projects Based on the Differential Game Model," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    9. Fangyuan Zhao & Wai Kin (Victor) Chan, 2020. "When Is Blockchain Worth It? A Case Study of Carbon Trading," Energies, MDPI, vol. 13(8), pages 1-28, April.
    10. Seong-Kyu Kim & Jun-Ho Huh, 2020. "Blockchain of Carbon Trading for UN Sustainable Development Goals," Sustainability, MDPI, vol. 12(10), pages 1-32, May.
    11. Khouloud Senda Bennani & Ibrahim Arpaci, 2021. "Factors Influencing Individual and Organizational Adoption of Cryptocurrencies," World Scientific Book Chapters, in: Stéphane Goutte & Khaled Guesmi & Samir Saadi (ed.), Cryptofinance A New Currency for a New Economy, chapter 8, pages 147-169, World Scientific Publishing Co. Pte. Ltd..
    12. Antonio Bento & Ravi Kanbur & Benjamin Leard, 2016. "On the importance of baseline setting in carbon offsets markets," Climatic Change, Springer, vol. 137(3), pages 625-637, August.
    13. Changping Zhao & Juanjuan Sun & Yu Gong & Zhi Li & Peter Zhou, 2022. "Research on the Blue Carbon Trading Market System under Blockchain Technology," Energies, MDPI, vol. 15(9), pages 1-17, April.
    14. Marco Schletz & Laura A. Franke & Søren Salomo, 2020. "Blockchain Application for the Paris Agreement Carbon Market Mechanism—A Decision Framework and Architecture," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    15. Marina Dorokhova & Jérémie Vianin & Jean-Marie Alder & Christophe Ballif & Nicolas Wyrsch & David Wannier, 2021. "A Blockchain-Supported Framework for Charging Management of Electric Vehicles," Energies, MDPI, vol. 14(21), pages 1-32, November.
    16. Xiuli Wang & Fang Yao & Fushuan Wen, 2022. "Applications of Blockchain Technology in Modern Power Systems: A Brief Survey," Energies, MDPI, vol. 15(13), pages 1-22, June.
    17. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Wu, Jianzhong, 2020. "A blockchain based peer-to-peer trading framework integrating energy and carbon markets," Applied Energy, Elsevier, vol. 279(C).
    18. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    19. Sam Hartmann & Sebastian Thomas, 2020. "Applying Blockchain to the Australian Carbon Market," Economic Papers, The Economic Society of Australia, vol. 39(2), pages 133-151, June.
    20. Amin Shokri & Ali Shokri & Dean White & Richard Gelski & Yosse Goldberg & Stephen Harrison & Taha Hossein Rashidi, 2022. "EnviroCoin: A Holistic, Blockchain Empowered, Consensus-Based Carbon Saving Unit Ecosystem," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    21. Orestis Delardas & Panagiotis Giannos, 2022. "Towards Energy Transition: Use of Blockchain in Renewable Certificates to Support Sustainability Commitments," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    22. Wu, Ying & Wu, Yanpeng & Cimen, Halil & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading," Applied Energy, Elsevier, vol. 314(C).
    23. Morkunas, Vida J. & Paschen, Jeannette & Boon, Edward, 2019. "How blockchain technologies impact your business model," Business Horizons, Elsevier, vol. 62(3), pages 295-306.
    24. Noah Kaufman & Alexander R. Barron & Wojciech Krawczyk & Peter Marsters & Haewon McJeon, 2020. "A near-term to net zero alternative to the social cost of carbon for setting carbon prices," Nature Climate Change, Nature, vol. 10(11), pages 1010-1014, November.
    25. Paul Gatabazi & Gaëtan Kabera & Jules Clement Mba & Edson Pindza & Sileshi Fanta Melesse, 2022. "Cryptocurrencies and Tokens Lifetime Analysis from 2009 to 2021," Economies, MDPI, vol. 10(3), pages 1-14, March.
    26. Vincent Ooi, 2022. "Tax challenges in debt financing involving digital tokens," Capital Markets Law Journal, Oxford University Press, vol. 17(4), pages 564-582.
    27. R. Quentin Grafton & Hoang Long Chu & Harry Nelson & Gérard Bonnis, 2021. "A global analysis of the cost-efficiency of forest carbon sequestration," OECD Environment Working Papers 185, OECD Publishing.
    28. Hua, Weiqi & Jiang, Jing & Sun, Hongjian & Teng, Fei & Strbac, Goran, 2022. "Consumer-centric decarbonization framework using Stackelberg game and Blockchain," Applied Energy, Elsevier, vol. 309(C).
    29. Khaqqi, Khamila Nurul & Sikorski, Janusz J. & Hadinoto, Kunn & Kraft, Markus, 2018. "Incorporating seller/buyer reputation-based system in blockchain-enabled emission trading application," Applied Energy, Elsevier, vol. 209(C), pages 8-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shekhar Rathor & Mingyu Zhang & Taehoon Im, 2023. "Web 3.0 and Sustainability: Challenges and Research Opportunities," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    2. Guocong Zhang & Sonia Chien-I Chen & Xiucheng Yue, 2024. "Blockchain Technology in Carbon Trading Markets: Impacts, Benefits, and Challenges—A Case Study of the Shanghai Environment and Energy Exchange," Energies, MDPI, vol. 17(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahel Mandaroux & Chuanwen Dong & Guodong Li, 2021. "A European Emissions Trading System Powered by Distributed Ledger Technology: An Evaluation Framework," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    2. Changping Zhao & Juanjuan Sun & Yu Gong & Zhi Li & Peter Zhou, 2022. "Research on the Blue Carbon Trading Market System under Blockchain Technology," Energies, MDPI, vol. 15(9), pages 1-17, April.
    3. Xiangyang Yu & Xiaojing Wang, 2023. "Research on Carbon-Trading Model of Urban Public Transport Based on Blockchain Technology," Energies, MDPI, vol. 16(6), pages 1-21, March.
    4. Hanghang Dong & Jun Yang & Xiaoming Li & Lan Xu, 2024. "Explore the Impact Mechanism of Block Chain Technology on China's Carbon Market," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 105-135, July.
    5. Li, Qingqing & Shi, Jinbo & Ni, Kan & Wang, Ruohan & Zhang, Chongyi & Yang, Nan & Yang, Yifei & Shen, Yifan & Guo, Ru & Liao, Zhenliang, 2024. "A highly credible and efficient real-time carbon MRV + O system for delicacy management of distributed carbon abatement behaviors," Applied Energy, Elsevier, vol. 355(C).
    6. Chunhua Ju & Zhonghua Shen & Fuguang Bao & Pengtong Weng & Yihang Xu & Chonghuan Xu, 2022. "A Novel Credible Carbon Footprint Traceability System for Low Carbon Economy Using Blockchain Technology," IJERPH, MDPI, vol. 19(16), pages 1-16, August.
    7. Rui Sun & Dayi He & Jingjing Yan & Li Tao, 2021. "Mechanism Analysis of Applying Blockchain Technology to Forestry Carbon Sink Projects Based on the Differential Game Model," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    8. Ferdaus, Md Meftahul & Dam, Tanmoy & Anavatti, Sreenatha & Das, Sarobi, 2024. "Digital technologies for a net-zero energy future: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    9. Büttgen, Marion & al.,, 2021. "Blockchain in Service Management and Service Research - Developing a Research Agenda and Managerial Implications," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 5(2), pages 71-102.
    10. Wang, Juan & Zheng, Junjun & Yu, Liukai & Goh, Mark & Tang, Yunying & Huang, Yongchao, 2023. "Distributed Reputation-Distance iterative auction system for Peer-To-Peer power trading," Applied Energy, Elsevier, vol. 345(C).
    11. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    12. Haoran He & Yefeng Chen, 2021. "Auction mechanisms for allocating subsidies for carbon emissions reduction: an experimental investigation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 57(2), pages 387-430, August.
    13. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    14. Sadawi, Alia Al & Madani, Batool & Saboor, Sara & Ndiaye, Malick & Abu-Lebdeh, Ghassan, 2021. "A comprehensive hierarchical blockchain system for carbon emission trading utilizing blockchain of things and smart contract," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    15. Requate, Till & Camacho-Cuena, Eva & Kean Siang, Ch'ng & Waichman, Israel, 2019. "Tell the truth or not? The montero mechanism for emissions control at work," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 133-152.
    16. Fabio Bothner, 2021. "Personal Carbon Trading—Lost in the Policy Primeval Soup?," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    17. Boza, Pal & Evgeniou, Theodoros, 2021. "Artificial intelligence to support the integration of variable renewable energy sources to the power system," Applied Energy, Elsevier, vol. 290(C).
    18. Qin, Meng & Zhang, Xiaojing & Li, Yameng & Badarcea, Roxana Maria, 2023. "Blockchain market and green finance: The enablers of carbon neutrality in China," Energy Economics, Elsevier, vol. 118(C).
    19. Tao, Hu & Zhuang, Shan & Xue, Rui & Cao, Wei & Tian, Jinfang & Shan, Yuli, 2022. "Environmental Finance: An Interdisciplinary Review," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    20. Ahl, Amanda & Goto, Mika & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2022. "Challenges and opportunities of blockchain energy applications: Interrelatedness among technological, economic, social, environmental, and institutional dimensions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8495-:d:1154121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.