IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p7855-d1144289.html
   My bibliography  Save this article

Anti-Counterfeiting and Traceability Consensus Algorithm Based on Weightage to Contributors in a Food Supply Chain of Industry 4.0

Author

Listed:
  • Ji Tan

    (Faculty of Information Technology, City University, Petaling Jaya 46100, Malaysia)

  • S. B. Goyal

    (Faculty of Information Technology, City University, Petaling Jaya 46100, Malaysia)

  • Anand Singh Rajawat

    (School of Computer Sciences & Engineering, Sandip University, Nashik 422213, India)

  • Tony Jan

    (Centre for Artificial Intelligence Research and Optimization, Design and Creative Technology Vertical, Torrens University, Sydney 2007, Australia)

  • Neda Azizi

    (School of Information Systems, Torrens University, Sydney 2007, Australia)

  • Mukesh Prasad

    (School of Computer Science, Faculty of Engineering and IT (FEIT), University of Technology Sydney, Sydney 2007, Australia)

Abstract

Supply chain management can significantly benefit from contemporary technologies. Among these technologies, blockchain is considered suitable for anti-counterfeiting and traceability applications due to its openness, decentralization, anonymity, and other characteristics. This article introduces different types of blockchains and standard algorithms used in blockchain technology and discusses their advantages and disadvantages. To improve the work efficiency of anti-counterfeiting traceability systems in supply chains and reduce their energy consumption, this paper proposes a model based on the practical Byzantine fault tolerance (PBFT) algorithm of alliance chains. This model uses a credit evaluation system to select the primary node and integrates the weightage to contributors (WtC) algorithm based on the consensus mechanism. This model can reduce the decline in the algorithm success rate while increasing the number of malicious transaction nodes, thereby reducing the computing cost. Additionally, the throughput of the algorithmic system increases rapidly, reaching approximately 680 transactions per second (TPS) in about 120 min after the malicious nodes are eliminated. The throughput rapidly increases as the blacklist mechanism reduces the number of malicious nodes, which improves the system’s fault tolerance. To validate the effectiveness of the proposed model, a case study was conducted using data from the anti-counterfeiting traceability system of the real-life supply chain of a food company. The analysis results show that after a period of stable operation of the WtCPBFT algorithm in the proposed model, the overall communication cost of the system was reduced, the throughput and stability were improved, and the fault-tolerant performance of the system was improved. In conclusion, this paper presents a novel model that utilizes the PBFT algorithm of alliance chains and the WtC algorithm to improve the efficiency and security of anti-counterfeiting traceability systems in supply chains. The results of the case study indicate that this model can effectively reduce communication costs, improve throughput and stability, and enhance the fault tolerance of the system.

Suggested Citation

  • Ji Tan & S. B. Goyal & Anand Singh Rajawat & Tony Jan & Neda Azizi & Mukesh Prasad, 2023. "Anti-Counterfeiting and Traceability Consensus Algorithm Based on Weightage to Contributors in a Food Supply Chain of Industry 4.0," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7855-:d:1144289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/7855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/7855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Wang & Wenan Tan & Jiakai Wu & Pan Liu, 2022. "OPBFT: Optimized Practical Byzantine Fault Tolerant Consensus Mechanism Model," Springer Proceedings in Business and Economics, in: Hui Yang & Robin Qiu & Weiwei Chen (ed.), AI and Analytics for Public Health, pages 123-135, Springer.
    2. Mohamed Keddar & Mamadou Lamine Doumbia & Karim Belmokhtar & Mohamed Della Krachai, 2022. "Enhanced Reactive Power Sharing and Voltage Restoration Based on Adaptive Virtual Impedance and Consensus Algorithm," Energies, MDPI, vol. 15(10), pages 1-19, May.
    3. Yang, Kang & Li, Chunhua & Jing, Xu & Zhu, Zhiyu & Wang, Yuting & Ma, Haodong & Zhang, Yu, 2022. "Energy dispatch optimization of islanded multi-microgrids based on symbiotic organisms search and improved multi-agent consensus algorithm," Energy, Elsevier, vol. 239(PC).
    4. Huanliang Xiong & Muxi Chen & Canghai Wu & Yingding Zhao & Wenlong Yi, 2022. "Research on Progress of Blockchain Consensus Algorithm: A Review on Recent Progress of Blockchain Consensus Algorithms," Future Internet, MDPI, vol. 14(2), pages 1-24, January.
    5. Chuansheng Wang & Xuecheng Tan & Cuiyou Yao & Feng Gu & Fulei Shi & Haiqing Cao, 2022. "Trusted Blockchain-Driven IoT Security Consensus Mechanism," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    6. Xu, Xiaofeng & Wang, Chenglong & Zhou, Peng, 2021. "GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective," International Journal of Production Economics, Elsevier, vol. 235(C).
    7. Sudhanshu Joshi & Manu Sharma & Banu Y. Ekren & Yigit Kazancoglu & Sunil Luthra & Mukesh Prasad, 2023. "Assessing Supply Chain Innovations for Building Resilient Food Supply Chains: An Emerging Economy Perspective," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    8. Hunt, Kyle & Narayanan, Adithya & Zhuang, Jun, 2022. "Blockchain in humanitarian operations management: A review of research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    9. Amin Shokri & Ali Shokri & Dean White & Richard Gelski & Yosse Goldberg & Stephen Harrison & Taha Hossein Rashidi, 2022. "EnviroCoin: A Holistic, Blockchain Empowered, Consensus-Based Carbon Saving Unit Ecosystem," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    10. Henry M. Kim & Marek Laskowski, 2018. "Toward an ontology‐driven blockchain design for supply‐chain provenance," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 25(1), pages 18-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    2. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    3. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    4. Weiming Liu & Yating Qiu & Lijiang Jia & Hang Zhou, 2022. "Carbon Emissions Trading and Green Technology Innovation—A Quasi-natural Experiment Based on a Carbon Trading Market Pilot," IJERPH, MDPI, vol. 19(24), pages 1-13, December.
    5. Jiang, Rong & Kang, Yuanjie & Liu, Yongsong & Liang, Zhihong & Duan, Yunlong & Sun, Yani & Liu, Jialan, 2022. "A trust transitivity model of small and medium-sized manufacturing enterprises under blockchain-based supply chain finance," International Journal of Production Economics, Elsevier, vol. 247(C).
    6. Guo, Yating & Rosland, Anitha & Ishak, Suryati & Muhammad Senan, Mohammad Khair Afham, 2023. "Public spending and natural resources development: A way toward green economic growth in China," Resources Policy, Elsevier, vol. 86(PB).
    7. Sajad Koochakinia & Amir Ebrahimi-Moghadam & Mahdi Deymi-Dashtebayaz, 2022. "Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    8. Kocsis, David, 2019. "A conceptual foundation of design and implementation research in accounting information systems," International Journal of Accounting Information Systems, Elsevier, vol. 34(C), pages 1-1.
    9. Pedro Azevedo & Jorge Gomes & Mário Romão, 2023. "Supply chain traceability using blockchain," Operations Management Research, Springer, vol. 16(3), pages 1359-1381, September.
    10. Chang, Jasmine (Aichih) & Katehakis, Michael N. & Shi, Jim (Junmin) & Yan, Zhipeng, 2021. "Blockchain-empowered Newsvendor optimization," International Journal of Production Economics, Elsevier, vol. 238(C).
    11. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    12. Neo C. K. Yiu, 2021. "Decentralizing Supply Chain Anti-Counterfeiting and Traceability Systems Using Blockchain Technology," Future Internet, MDPI, vol. 13(4), pages 1-33, March.
    13. Gupta, Shivam & Modgil, Sachin & Choi, Tsan-Ming & Kumar, Ajay & Antony, Jiju, 2023. "Influences of artificial intelligence and blockchain technology on financial resilience of supply chains," International Journal of Production Economics, Elsevier, vol. 261(C).
    14. Yijing Chu & Yingying Wang & Zucheng Zhang & Shengli Dai, 2022. "Decoupling of Economic Growth and Industrial Water Use in Hubei Province: From an Ecological–Economic Interaction Perspective," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    15. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    16. Summer K. Mohamed & Sandra Haddad & Mahmoud Barakat & Bojan Rosi, 2023. "Blockchain Technology Adoption for Improved Environmental Supply Chain Performance: The Mediation Effect of Supply Chain Resilience, Customer Integration, and Green Customer Information Sharing," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    17. Xin Cao & Qin Luo & Peng Wu, 2022. "Filter-GAN: Imbalanced Malicious Traffic Classification Based on Generative Adversarial Networks with Filter," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
    18. Kouhizadeh, Mahtab & Saberi, Sara & Sarkis, Joseph, 2021. "Blockchain technology and the sustainable supply chain: Theoretically exploring adoption barriers," International Journal of Production Economics, Elsevier, vol. 231(C).
    19. Heira Georgina Valdez Bocanegra, 2024. "Supply Chain Management and Innovation Practices as Core Strategies for Business Competitiveness and Performance," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(4), pages 1-3.
    20. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:7855-:d:1144289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.