IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v80y2022ics0038012121001671.html
   My bibliography  Save this article

Blockchain in humanitarian operations management: A review of research and practice

Author

Listed:
  • Hunt, Kyle
  • Narayanan, Adithya
  • Zhuang, Jun

Abstract

Humanitarian operations management (HOM) defines the broad domain that deals with the management of crisis events and human suffering, and a plethora of research has contributed to this field. Over the recent years, blockchain technology has been signaled throughout the literature as a tool that can support HOM as a result of the technology's enhanced features such as security and auditability. In a bid to explore the application of blockchain technology in HOM, we systematically review the current literature and deployed practices. Our review covers 64 articles that provide contributions which we categorize into four focus areas: (i) overview of blockchain in HOM, (ii) identity and personal data management, (iii) humanitarian logistics, and (iv) humanitarian communications. The majority of the articles that we surveyed focus on the potential benefits of blockchain in HOM, and the enablers and barriers to its adoption. A limited number of theoretical frameworks provide insights into how blockchain can be utilized in HOM to improve operational efficiency, promote trust, and foster collaborations among relief agencies. With the exception of a few pilot programs that have been deployed in the humanitarian setting, we find that the majority of the work addressing the use of blockchain in HOM has not yet been tested in the field, and therefore, little empirical evidence exists to prove blockchain's capabilities in HOM. This paper reports on the major scientific advancements and practical applications for blockchain technology in HOM, as well as promising future research directions on the use of blockchain technology for HOM practitioners and researchers.

Suggested Citation

  • Hunt, Kyle & Narayanan, Adithya & Zhuang, Jun, 2022. "Blockchain in humanitarian operations management: A review of research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:soceps:v:80:y:2022:i:c:s0038012121001671
    DOI: 10.1016/j.seps.2021.101175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012121001671
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2021.101175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Angappa Gunasekaran & Rameshwar Dubey & Samuel Fosso Wamba & Thanos Papadopoulos & Benjamin T. Hazen & Eric W.T. Ngai, 2018. "Bridging humanitarian operations management and organisational theory," International Journal of Production Research, Taylor & Francis Journals, vol. 56(21), pages 6735-6740, November.
    3. Russell Sobel & Peter Leeson, 2006. "Government's response to Hurricane Katrina: A public choice analysis," Public Choice, Springer, vol. 127(1), pages 55-73, April.
    4. Rameshwar Dubey & Angappa Gunasekaran & David J. Bryde & Yogesh K. Dwivedi & Thanos Papadopoulos, 2020. "Blockchain technology for enhancing swift-trust, collaboration and resilience within a humanitarian supply chain setting," International Journal of Production Research, Taylor & Francis Journals, vol. 58(11), pages 3381-3398, June.
    5. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(1), pages 1-2, May.
    6. Nezih Altay & Raktim Pal, 2014. "Information Diffusion among Agents: Implications for Humanitarian Operations," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 1015-1027, June.
    7. Wang, Yingli & Singgih, Meita & Wang, Jingyao & Rit, Mihaela, 2019. "Making sense of blockchain technology: How will it transform supply chains?," International Journal of Production Economics, Elsevier, vol. 211(C), pages 221-236.
    8. Ali Pala & Jun Zhuang, 2019. "Information Sharing in Cybersecurity: A Review," Decision Analysis, INFORMS, vol. 16(3), pages 172-196, September.
    9. Volodymyr Babich & Gilles Hilary, 2020. "OM Forum—Distributed Ledgers and Operations: What Operations Management Researchers Should Know About Blockchain Technology," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 223-245, March.
    10. Balcik, Burcu & Beamon, Benita M. & Krejci, Caroline C. & Muramatsu, Kyle M. & Ramirez, Magaly, 2010. "Coordination in humanitarian relief chains: Practices, challenges and opportunities," International Journal of Production Economics, Elsevier, vol. 126(1), pages 22-34, July.
    11. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    12. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2019. "The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics," International Journal of Production Research, Taylor & Francis Journals, vol. 57(3), pages 829-846, February.
    13. Eiji Yamamura, 2014. "Impact of natural disaster on public sector corruption," Public Choice, Springer, vol. 161(3), pages 385-405, December.
    14. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    15. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    16. Galindo, Gina & Batta, Rajan, 2013. "Review of recent developments in OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 230(2), pages 201-211.
    17. Maria Besiou & Luk N. Van Wassenhove, 2020. "Humanitarian Operations: A World of Opportunity for Relevant and Impactful Research," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 135-145, January.
    18. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    19. Walid Al-Saqaf & Nicolas Seidler, 2017. "Blockchain technology for social impact: opportunities and challenges ahead," Journal of Cyber Policy, Taylor & Francis Journals, vol. 2(3), pages 338-354, September.
    20. de la Torre, Luis E. & Dolinskaya, Irina S. & Smilowitz, Karen R., 2012. "Disaster relief routing: Integrating research and practice," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 88-97.
    21. Kyle Hunt & Bairong Wang & Jun Zhuang, 2020. "Misinformation debunking and cross-platform information sharing through Twitter during Hurricanes Harvey and Irma: a case study on shelters and ID checks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 861-883, August.
    22. Oscar Rodríguez-Espíndola & Soumyadeb Chowdhury & Ahmad Beltagui & Pavel Albores, 2020. "The potential of emergent disruptive technologies for humanitarian supply chains: the integration of blockchain, Artificial Intelligence and 3D printing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(15), pages 4610-4630, July.
    23. Reinsberg, Bernhard, 2019. "Blockchain technology and the governance of foreign aid," Journal of Institutional Economics, Cambridge University Press, vol. 15(3), pages 413-429, June.
    24. Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Roubaud, David & Fosso Wamba, Samuel & Giannakis, Mihalis & Foropon, Cyril, 2019. "Big data analytics and organizational culture as complements to swift trust and collaborative performance in the humanitarian supply chain," International Journal of Production Economics, Elsevier, vol. 210(C), pages 120-136.
    25. Sameer Prasad & Rimi Zakaria & Nezih Altay, 2018. "Big data in humanitarian supply chain networks: a resource dependence perspective," Annals of Operations Research, Springer, vol. 270(1), pages 383-413, November.
    26. Martin K. Starr & Luk N. Van Wassenhove, 2014. "Introduction to the Special Issue on Humanitarian Operations and Crisis Management," Production and Operations Management, Production and Operations Management Society, vol. 23(6), pages 925-937, June.
    27. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(2), pages 109-110, August.
    28. Elham Seyedsayamdost & Peter Vanderwal, 2020. "From Good Governance to Governance for Good: Blockchain for Social Impact," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(6), pages 943-960, August.
    29. Sahebi, Iman Ghasemian & Masoomi, Behzad & Ghorbani, Shahryar, 2020. "Expert oriented approach for analyzing the blockchain adoption barriers in humanitarian supply chain," Technology in Society, Elsevier, vol. 63(C).
    30. Mehrdokht Pournader & Yangyan Shi & Stefan Seuring & S.C. Lenny Koh, 2020. "Blockchain applications in supply chains, transport and logistics: a systematic review of the literature," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2063-2081, April.
    31. Daniel Seaberg & Laura Devine & Jun Zhuang, 2017. "A review of game theory applications in natural disaster management research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1461-1483, December.
    32. Minjae Yoo & Yoojae Won, 2018. "A Study on the Transparent Price Tracing System in Supply Chain Management Based on Blockchain," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    33. Abdallah S. Daar & Trillium Chang & Angela Salomon & Peter A. Singer, 2018. "Grand challenges in humanitarian aid," Nature, Nature, vol. 559(7713), pages 169-173, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ji Tan & S. B. Goyal & Anand Singh Rajawat & Tony Jan & Neda Azizi & Mukesh Prasad, 2023. "Anti-Counterfeiting and Traceability Consensus Algorithm Based on Weightage to Contributors in a Food Supply Chain of Industry 4.0," Sustainability, MDPI, vol. 15(10), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    2. Josip Marić & Carlos Galera-Zarco & Marco Opazo-Basáez, 2022. "The emergent role of digital technologies in the context of humanitarian supply chains: a systematic literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1003-1044, December.
    3. Kovacs, Gyöngyi & Moshtari, Mohammad, 2019. "A roadmap for higher research quality in humanitarian operations: A methodological perspective," European Journal of Operational Research, Elsevier, vol. 276(2), pages 395-408.
    4. Choi, Tsan-Ming & Siqin, Tana, 2022. "Blockchain in logistics and production from Blockchain 1.0 to Blockchain 5.0: An intra-inter-organizational framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    5. Jacob Lohmer & Elias Ribeiro da Silva & Rainer Lasch, 2022. "Blockchain Technology in Operations & Supply Chain Management: A Content Analysis," Sustainability, MDPI, vol. 14(10), pages 1-88, May.
    6. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    7. Rameshwar Dubey & David J. Bryde & Cyril Foropon & Gary Graham & Mihalis Giannakis & Deepa Bhatt Mishra, 2022. "Agility in humanitarian supply chain: an organizational information processing perspective and relational view," Annals of Operations Research, Springer, vol. 319(1), pages 559-579, December.
    8. Samuel Fosso Wamba, 2022. "Humanitarian supply chain: a bibliometric analysis and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 937-963, December.
    9. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    10. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    11. Ioannis Kougkoulos & M. Selim Cakir & Nathan Kunz & Doreen S. Boyd & Alexander Trautrims & Kornilia Hatzinikolaou & Stefan Gold, 2021. "A Multi‐Method Approach to Prioritize Locations of Labor Exploitation for Ground‐Based Interventions," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4396-4411, December.
    12. Sachin Modgil & Rohit Kumar Singh & Cyril Foropon, 2022. "Quality management in humanitarian operations and disaster relief management: a review and future research directions," Annals of Operations Research, Springer, vol. 319(1), pages 1045-1098, December.
    13. Soumyadeb Chowdhury & Oscar Rodriguez-Espindola & Prasanta Dey & Pawan Budhwar, 2023. "Blockchain technology adoption for managing risks in operations and supply chain management: evidence from the UK," Annals of Operations Research, Springer, vol. 327(1), pages 539-574, August.
    14. Shahriar Akter & Samuel Fosso Wamba, 2019. "Big data and disaster management: a systematic review and agenda for future research," Annals of Operations Research, Springer, vol. 283(1), pages 939-959, December.
    15. Archana A Mukherjee & Rajesh Kumar Singh & Ruchi Mishra & Surajit Bag, 2022. "Application of blockchain technology for sustainability development in agricultural supply chain: justification framework," Operations Management Research, Springer, vol. 15(1), pages 46-61, June.
    16. Yadav, Amit Kumar & Shweta, & Kumar, Dinesh, 2023. "Blockchain technology and vaccine supply chain: Exploration and analysis of the adoption barriers in the Indian context," International Journal of Production Economics, Elsevier, vol. 255(C).
    17. Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
    18. Özdamar, Linet & Ertem, Mustafa Alp, 2015. "Models, solutions and enabling technologies in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 244(1), pages 55-65.
    19. Courtney Blair & Erica Gralla & Finley Wetmore & Jarrod Goentzel & Megan Peters, 2021. "A Systems Framework for International Development: The Data‐Layered Causal Loop Diagram," Production and Operations Management, Production and Operations Management Society, vol. 30(12), pages 4374-4395, December.
    20. Kamyabniya, Afshin & Noormohammadzadeh, Zohre & Sauré, Antoine & Patrick, Jonathan, 2021. "A robust integrated logistics model for age-based multi-group platelets in disaster relief operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:80:y:2022:i:c:s0038012121001671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.