IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v6y2002i4p367-393.html
   My bibliography  Save this article

A comprehensive procedure for performance evaluation of solar food dryers

Author

Listed:
  • Augustus Leon, M.
  • Kumar, S.
  • Bhattacharya, S. C.

Abstract

Solar food dryers are available in a range of size and design and are used for drying various food products. Testing a dryer is necessary to evaluate its absolute and comparative performance with other dryers and the test results provide relevant information for the designer as well as the user. Literature reviews on existing testing procedures reveal that a comprehensive procedure for evaluating the performance of solar food dryers is not available. Therefore, selection of dryers for a particular application is largely a decision based on what is available and the types of dryers currently used widely. This paper presents a detailed review of parameters generally used in testing and evaluation of different types of solar food dryers. The inadequacies of the parameters generally reported are highlighted and additional parameters have been suggested. Based on this review, a procedure has been proposed, giving the methodology, test conditions and a sample evaluation sheet. This would assist in an unambiguous evaluation of solar dryer performance and facilitate comparing different solar food dryers.

Suggested Citation

  • Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
  • Handle: RePEc:eee:rensus:v:6:y:2002:i:4:p:367-393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(02)00005-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fath, Hassan E.S., 1995. "Thermal performance of a simple design solar air heater with built-in thermal energy storage system," Renewable Energy, Elsevier, vol. 6(8), pages 1033-1039.
    2. Hollick, J.C., 1999. "Commercial scale solar drying," Renewable Energy, Elsevier, vol. 16(1), pages 714-719.
    3. Arinze, E.A. & Schoenau, G.J. & Sokhansanj, S., 1999. "Design and experimental evaluation of a solar dryer for commercial high-quality hay production," Renewable Energy, Elsevier, vol. 16(1), pages 639-642.
    4. Sharma, Vinod Kumar & Colangelo, Antonio & Spagna, Giuseppe, 1995. "Experimental investigation of different solar dryers suitable for fruit and vegetable drying," Renewable Energy, Elsevier, vol. 6(4), pages 413-424.
    5. Schirmer, P. & Janjai, S. & Esper, A. & Smitabhindu, R. & Mühlbauer, W., 1996. "Experimental investigation of the performance of the solar tunnel dryer for drying bananas," Renewable Energy, Elsevier, vol. 7(2), pages 119-129.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    2. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    3. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    4. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    5. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    6. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    7. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    8. Janjai, S. & Srisittipokakun, N. & Bala, B.K., 2008. "Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices," Energy, Elsevier, vol. 33(1), pages 91-103.
    9. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    10. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    11. Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
    12. Janjai, Serm & Intawee, Poolsak & Kaewkiew, Jinda & Sritus, Chanoke & Khamvongsa, Vathsana, 2011. "A large-scale solar greenhouse dryer using polycarbonate cover: Modeling and testing in a tropical environment of Lao People’s Democratic Republic," Renewable Energy, Elsevier, vol. 36(3), pages 1053-1062.
    13. Saini, Raj Kumar & Saini, Devender Kumar & Gupta, Rajeev & Verma, Piush & Thakur, Robin & Kumar, Sushil & wassouf, Ali, 2023. "Technological development in solar dryers from 2016 to 2021-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    14. Janjai, S. & Tung, P., 2005. "Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices," Renewable Energy, Elsevier, vol. 30(14), pages 2085-2095.
    15. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    16. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    17. Metwally, M.N. & Abou-Ziyan, H.Z. & El-Leathy, A.M., 1997. "Performance of advanced corrugated-duct solar air collector compared with five conventional designs," Renewable Energy, Elsevier, vol. 10(4), pages 519-537.
    18. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2019. "Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode," Energy, Elsevier, vol. 181(C), pages 882-896.
    19. Shukla, Ashish & Nkwetta, Dan Nchelatebe & Cho, Y.J. & Stevenson, Vicki & Jones, Phil, 2012. "A state of art review on the performance of transpired solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3975-3985.
    20. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:6:y:2002:i:4:p:367-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.