IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p4997-d798965.html
   My bibliography  Save this article

Investigation on Subjects’ Seasonal Perception and Adaptive Actions in Naturally Ventilated Hostel Dormitories in the Composite Climate Zone of India

Author

Listed:
  • Sanjay Kumar

    (Mechanical Engineering Department, Dr. B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India)

  • Manoj Kumar Singh

    (National Institute of Technology Arunachal Pradesh, Jote, Papum Pare 791123, Arunachal Pradesh, India
    Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova Cesta 2, 1000 Ljubljana, Slovenia)

  • Nedhal Al-Tamimi

    (Architectural Engineering Department, College of Engineering, Najran University, Najran 66462, Saudi Arabia)

  • Badr S. Alotaibi

    (Architectural Engineering Department, College of Engineering, Najran University, Najran 66462, Saudi Arabia)

  • Mohammed Awad Abuhussain

    (Architectural Engineering Department, College of Engineering, Najran University, Najran 66462, Saudi Arabia)

Abstract

A seasonal adaptive thermal comfort study was done on university students in naturally ventilated dormitories in the composite climate zone of India. A total of 1462 responses were collected from the students during the field study spread over the autumn, winter, spring, and summer seasons of the academic year for 2018 and 2019. A “Right Here Right Now” type of surveying method was adopted, and the indoor thermal parameters were recorded simultaneously using high-grade instruments. The subjects’ mean thermal sensation (TS) was skewed towards a slightly cool feeling for the combined data. Most occupants preferred a cooler thermal environment during the summer season, while hostel residents desired a warmer temperature during autumn, winter, and spring seasons. During the summer season, the PMV−PPD model overestimated the subjects’ actual thermal sensation, while it underestimated the their thermal sensation in the winter season. The mean comfort temperature T comf was observed to be close to 27.1 (±4.65 °C) for the pooled data. Mean clo values of about 0.57 (±0.25), 0.98 (±0.12), 0.45 (±0.27), and 0.36 (±0.11) were recorded during the autumn, winter, spring, and summer seasons, respectively. Furthermore, switching on ceiling fans and opening doors and windows improved occupants’ thermal satisfaction during different seasons. The study results show the effective use of environmental controls and the role of thermal adaptation in enhancing the subjects/overall thermal satisfaction in the composite climate of India.

Suggested Citation

  • Sanjay Kumar & Manoj Kumar Singh & Nedhal Al-Tamimi & Badr S. Alotaibi & Mohammed Awad Abuhussain, 2022. "Investigation on Subjects’ Seasonal Perception and Adaptive Actions in Naturally Ventilated Hostel Dormitories in the Composite Climate Zone of India," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4997-:d:798965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/4997/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/4997/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giulia Lamberti & Giacomo Salvadori & Francesco Leccese & Fabio Fantozzi & Philomena M. Bluyssen, 2021. "Advancement on Thermal Comfort in Educational Buildings: Current Issues and Way Forward," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    2. Singh, Manoj Kumar & Mahapatra, Sadhan & Atreya, S.K., 2011. "Adaptive thermal comfort model for different climatic zones of North-East India," Applied Energy, Elsevier, vol. 88(7), pages 2420-2428, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qibo Liu & Yimeng Zhang & Wendong Ma & Juan Ren, 2023. "Application of an Architect-Friendly Digital Design Approach to the Wind Environment of Campus Dormitory Buildings," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    2. Barun Mukhopadhyay & Charles A. Weitz, 2022. "Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India," IJERPH, MDPI, vol. 19(19), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    2. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    3. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    4. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    5. Rana Elnaklah & Yara Ayyad & Saba Alnusairat & Husam AlWaer & Abdulsalam AlShboul, 2023. "A Comparison of Students’ Thermal Comfort and Perceived Learning Performance between Two Types of University Halls: Architecture Design Studios and Ordinary Lecture Rooms during the Heating Season," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    6. Masoud Esfandiari & Suzaini Mohamed Zaid & Muhammad Azzam Ismail & Mohammad Reza Hafezi & Iman Asadi & Saleh Mohammadi, 2021. "A Field Study on Thermal Comfort and Cooling Load Demand Optimization in a Tropical Climate," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    7. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    8. Wonyoung Yang & Hyeun Jun Moon & Jin Yong Jeon, 2019. "Comparison of Response Scales as Measures of Indoor Environmental Perception in Combined Thermal and Acoustic Conditions," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    9. Antonella Yaacoub & Moez Esseghir & Leila Merghem-Boulahia, 2023. "A Review of Different Methodologies to Study Occupant Comfort and Energy Consumption," Energies, MDPI, vol. 16(4), pages 1-18, February.
    10. Hu, Jianhui & Chen, Wujun & Zhang, Sihao & Yin, Yue & Li, Yipo & Yang, Deqing, 2018. "Thermal characteristics and comfort assessment of enclosed large-span membrane stadiums," Applied Energy, Elsevier, vol. 229(C), pages 728-735.
    11. Kai Xin & Jingyuan Zhao & Tianhui Wang & Weijun Gao, 2022. "Supporting Design to Develop Rural Revitalization through Investigating Village Microclimate Environments: A Case Study of Typical Villages in Northwest China," IJERPH, MDPI, vol. 19(14), pages 1-20, July.
    12. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    13. Yaolin Lin & Pengju Chen & Wei Yang & Xiancun Hu & Lin Tian, 2024. "A Systematic Review on the Studies of Thermal Comfort in Urban Residential Buildings in China," Energies, MDPI, vol. 17(5), pages 1-38, February.
    14. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    15. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    16. V. S. K. V. Harish & Arun Kumar & Tabish Alam & Paolo Blecich, 2021. "Assessment of State-Space Building Energy System Models in Terms of Stability and Controllability," Sustainability, MDPI, vol. 13(21), pages 1-26, October.
    17. Kalliopi G. Droutsa & Simon Kontoyiannidis & Constantinos A. Balaras & Athanassios A. Argiriou & Elena G. Dascalaki & Konstantinos V. Varotsos & Christos Giannakopoulos, 2021. "Climate Change Scenarios and Their Implications on the Energy Performance of Hellenic Non-Residential Buildings," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    18. Domenico Palladino & Iole Nardi & Cinzia Buratti, 2020. "Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm," Energies, MDPI, vol. 13(17), pages 1-27, September.
    19. Ewa Zender-Świercz & Marek Telejko & Beata Galiszewska & Mariola Starzomska, 2022. "Assessment of Thermal Comfort in Rooms Equipped with a Decentralised Façade Ventilation Unit," Energies, MDPI, vol. 15(19), pages 1-16, September.
    20. Betty Lala & Solli Murtyas & Aya Hagishima, 2022. "Indoor Thermal Comfort and Adaptive Thermal Behaviors of Students in Primary Schools Located in the Humid Subtropical Climate of India," Sustainability, MDPI, vol. 14(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:4997-:d:798965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.