IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p991-d1342313.html
   My bibliography  Save this article

A Systematic Review on the Studies of Thermal Comfort in Urban Residential Buildings in China

Author

Listed:
  • Yaolin Lin

    (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Pengju Chen

    (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Wei Yang

    (Faculty of Architecture, Building and Planning, The University of Melbourne, Melbourne 3010, Australia)

  • Xiancun Hu

    (School of Design and the Built Environment, University of Canberra, Canberra 2617, Australia)

  • Lin Tian

    (School of Engineering, RMIT University, Melbourne 3000, Australia)

Abstract

There have been fruitful publications on thermal comfort of urban residential buildings in China. However, there is a lack of reviews on this topic to perform a comprehensive analysis and find opportunities to meet occupants’ thermal comfort needs while improving building energy efficiencies. This paper addresses this issue by presenting a systematic review on the advancements in research on thermal comfort in urban residential buildings in China. Firstly, two common thermal comfort research approaches, i.e., field studies and laboratory studies, are discussed. Secondly, eleven main thermal comfort evaluation indicators are summarized. Finally, this paper analyzes the thermal comfort survey data from different researchers, discusses the impacts of adaptive behaviors on human thermal comfort, and provides recommendations for future research on urban residential thermal comfort. It was found that people have higher and higher requirements for their indoor thermal environment as time goes by, especially in the winter; the thermoneutral temperature is higher in warmer climate regions in the summer but lower in the winter than in colder climate regions; the thermoneutral temperature tends to increase with the indoor air temperature due to an adaptation to the indoor thermal environment. The outcomes of this paper provide valuable information on thermal comfort behaviors of urban residents in different climate zones in China, which can serve as a resource for the academic community conducting future research on thermal comfort and assist policymakers in enhancing building energy efficiencies without compromising the occupants’ comfort.

Suggested Citation

  • Yaolin Lin & Pengju Chen & Wei Yang & Xiancun Hu & Lin Tian, 2024. "A Systematic Review on the Studies of Thermal Comfort in Urban Residential Buildings in China," Energies, MDPI, vol. 17(5), pages 1-38, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:991-:d:1342313
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Manoj Kumar & Mahapatra, Sadhan & Atreya, S.K., 2011. "Adaptive thermal comfort model for different climatic zones of North-East India," Applied Energy, Elsevier, vol. 88(7), pages 2420-2428, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buratti, C. & Palladino, D. & Ricciardi, P., 2016. "Application of a new 13-value thermal comfort scale to moderate environments," Applied Energy, Elsevier, vol. 180(C), pages 859-866.
    2. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    3. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    4. Masoud Esfandiari & Suzaini Mohamed Zaid & Muhammad Azzam Ismail & Mohammad Reza Hafezi & Iman Asadi & Saleh Mohammadi, 2021. "A Field Study on Thermal Comfort and Cooling Load Demand Optimization in a Tropical Climate," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    5. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    6. Wonyoung Yang & Hyeun Jun Moon & Jin Yong Jeon, 2019. "Comparison of Response Scales as Measures of Indoor Environmental Perception in Combined Thermal and Acoustic Conditions," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
    7. Hu, Jianhui & Chen, Wujun & Zhang, Sihao & Yin, Yue & Li, Yipo & Yang, Deqing, 2018. "Thermal characteristics and comfort assessment of enclosed large-span membrane stadiums," Applied Energy, Elsevier, vol. 229(C), pages 728-735.
    8. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    9. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    10. Zomorodian, Zahra Sadat & Tahsildoost, Mohammad & Hafezi, Mohammadreza, 2016. "Thermal comfort in educational buildings: A review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 895-906.
    11. Sanjay Kumar & Manoj Kumar Singh & Nedhal Al-Tamimi & Badr S. Alotaibi & Mohammed Awad Abuhussain, 2022. "Investigation on Subjects’ Seasonal Perception and Adaptive Actions in Naturally Ventilated Hostel Dormitories in the Composite Climate Zone of India," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    12. Domenico Palladino & Iole Nardi & Cinzia Buratti, 2020. "Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm," Energies, MDPI, vol. 13(17), pages 1-27, September.
    13. Chuan Chen & Mengshu He & Zihan Chu & Lishi He & Jiale Zhu & Yuan Bu & Jiangjun Wan & Lingqing Zhang, 2022. "Field Study on Indoor Thermal Environments of Monastic Houses and Thermal Comfort of Monks," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    14. Zuo, Jian & Zhao, Zhen-Yu, 2014. "Green building research–current status and future agenda: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 271-281.
    15. Ahmed Ali A. Shohan & Hanan Al-Khatri & Ahmed Ali Bindajam & Mohamed B. Gadi, 2021. "Solar Gain Influence on the Thermal and Energy Performance of Existing Mosque Buildings in the Hot-Arid Climate of Riyadh City," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    16. Du, Chenqiu & Li, Baizhan & Yu, Wei & Liu, Hong & Yao, Runming, 2019. "Energy flexibility for heating and cooling based on seasonal occupant thermal adaptation in mixed-mode residential buildings," Energy, Elsevier, vol. 189(C).
    17. Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
    18. Ning, Haoran & Wang, Zhaojun & Ji, Yuchen, 2016. "Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?," Applied Energy, Elsevier, vol. 183(C), pages 22-30.
    19. Prativa Lamsal & Sushil Bahadur Bajracharya & Hom Bahadur Rijal, 2023. "A Review on Adaptive Thermal Comfort of Office Building for Energy-Saving Building Design," Energies, MDPI, vol. 16(3), pages 1-23, February.
    20. Sally S. Shahzad & John Brennan & Dimitris Theodossopoulos & Ben Hughes & John Kaiser Calautit, 2016. "Building-Related Symptoms, Energy, and Thermal Control in the Workplace: Personal and Open Plan Offices," Sustainability, MDPI, vol. 8(4), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:991-:d:1342313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.