IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p4090-d783203.html
   My bibliography  Save this article

Urban Spatial Development Based on Multisource Data Analysis: A Case Study of Xianyang City’s Integration into Xi’an International Metropolis

Author

Listed:
  • Yiyi Hu

    (Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Institute of Qinling Mountains, Northwest University, Xi’an 710127, China
    Yellow River Institute of Shaanxi Province, Northwest University, Xi’an 710127, China)

  • Yi He

    (Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Institute of Qinling Mountains, Northwest University, Xi’an 710127, China
    Yellow River Institute of Shaanxi Province, Northwest University, Xi’an 710127, China
    The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Xianyang 712100, China)

  • Yanlin Li

    (Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
    Institute of Qinling Mountains, Northwest University, Xi’an 710127, China
    Yellow River Institute of Shaanxi Province, Northwest University, Xi’an 710127, China)

Abstract

The study of urban spatial development focuses on the process of urbanization, which involves the urban economy, population, the scale of urban construction land and the construction land’s structure. All this influences the economic structure, social structure and functional structure of the city. Taking Xianyang City, a core part of Xi’an international metropolis, as an example, this study, based on night light remote sensing data from 1992 to 2013, land use data from 1980 to 2015 (6 periods), AutoNavi Map (AMAP) Points of Interest (POI) data, and the patch-generated land use simulation model (PLUS), simulates the spatial–temporal pattern change characteristics of land use in Xianyang City from 2025 to 2035. The results show that: (1) During 1985–2015, urban land use showed a significant upward trend ( p < 0.05); (2) From 1992 to 2013, the change in night light in the Xianyang City Administrative Region showed an upward trend. The gravitational center of Xianyang City’s built-up area moves southeast first and then northeast. After the beginning of 2010, the gravitational center of Xianyang City’s built-up area moved faster; (3) The distribution of different types of urban centers in Xianyang City is basically the same; (4) From 2005 to 2035, the overall land use in Xianyang City showed a trend of “multi polar explosive growth in construction land, slow growth in forest land, and first a decrease then an increase in wetland water body”. The urban spatial structure has changed from a single-center development model to a point–axis development model. The study of urban space development can provide some reference for the layout of urban construction in the future.

Suggested Citation

  • Yiyi Hu & Yi He & Yanlin Li, 2022. "Urban Spatial Development Based on Multisource Data Analysis: A Case Study of Xianyang City’s Integration into Xi’an International Metropolis," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4090-:d:783203
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/4090/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/4090/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kurata, Masamitsu & Matsui, Noriatsu & Ikemoto, Yukio & Tsuboi, Hiromi, 2018. "Do determinants of adopting solar home systems differ between households and micro-enterprises? Evidence from rural Bangladesh," Renewable Energy, Elsevier, vol. 129(PA), pages 309-316.
    2. Simwanda, Matamyo & Murayama, Yuji & Ranagalage, Manjula, 2020. "Modeling the drivers of urban land use changes in Lusaka, Zambia using multi-criteria evaluation: An analytic network process approach," Land Use Policy, Elsevier, vol. 92(C).
    3. repec:nas:journl:v:115:y:2018:p:3529-3537 is not listed on IDEAS
    4. Guangzhao Chen & Xia Li & Xiaoping Liu & Yimin Chen & Xun Liang & Jiye Leng & Xiaocong Xu & Weilin Liao & Yue’an Qiu & Qianlian Wu & Kangning Huang, 2020. "Global projections of future urban land expansion under shared socioeconomic pathways," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    5. Ruixi Dong & Fengying Yan, 2021. "Revealing Characteristics of the Spatial Structure of Megacities at Multiple Scales with Jobs-Housing Big Data: A Case Study of Tianjin, China," Land, MDPI, vol. 10(11), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    2. Linghua Qiu & Junhao He & Chao Yue & Philippe Ciais & Chunmiao Zheng, 2024. "Substantial terrestrial carbon emissions from global expansion of impervious surface area," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Zhixin Zhang & Min Chen & Teng Zhong & Rui Zhu & Zhen Qian & Fan Zhang & Yue Yang & Kai Zhang & Paolo Santi & Kaicun Wang & Yingxia Pu & Lixin Tian & Guonian Lü & Jinyue Yan, 2023. "Carbon mitigation potential afforded by rooftop photovoltaic in China," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Han Li & Wei Song, 2021. "Cropland Abandonment and Influencing Factors in Chongqing, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    5. Wei Yang & Yuanxu Ma & Linhai Jing & Siyuan Wang & Zhongchang Sun & Yunwei Tang & Hui Li, 2022. "Differential Impacts of Climatic and Land Use Changes on Habitat Suitability and Protected Area Adequacy across the Asian Elephant’s Range," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    6. Andrew Allan & Ali Soltani & Mohammad Hamed Abdi & Melika Zarei, 2022. "Driving Forces behind Land Use and Land Cover Change: A Systematic and Bibliometric Review," Land, MDPI, vol. 11(8), pages 1-20, August.
    7. Juan Carlos Alías & José Antonio Mejías & Natividad Chaves, 2022. "Effect of Cropland Abandonment on Soil Carbon Stock in an Agroforestry System in Southwestern Spain," Land, MDPI, vol. 11(3), pages 1-12, March.
    8. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    9. Karner, Katrin & Mitter, Hermine & Sinabell, Franz & Schönhart, Martin, 2024. "Participatory development of Shared Socioeconomic Pathways for Austria’s agriculture and food systems," Land Use Policy, Elsevier, vol. 142(C).
    10. Yusong Xie & Katsue Fukamachi & Wen Wang & Shozo Shibata, 2023. "Exploring Land Use Management Strategies through Morphological Spatial Patterns Using a Climate–Socioeconomic-Based Land Use Simulation Modeling Framework," Land, MDPI, vol. 12(9), pages 1-24, September.
    11. Tuan Nguyen Tran, 2024. "Comparing the process of converting land use purposes between socio-economic regions in Vietnam from 2007 to 2020," Environmental & Socio-economic Studies, Sciendo, vol. 12(3), pages 51-62.
    12. Cruz-Daraviña, Paola Andrea & Bocarejo Suescún, Juan Pablo, 2021. "Freight operations in city centers: A land use conflict in urban planning," Land Use Policy, Elsevier, vol. 108(C).
    13. Eduilson Carneiro & Wilza Lopes & Giovana Espindola, 2021. "Linking Urban Sprawl and Surface Urban Heat Island in the Teresina–Timon Conurbation Area in Brazil," Land, MDPI, vol. 10(5), pages 1-16, May.
    14. Muhammad Salem & Naoki Tsurusaki, 2024. "Impacts of Rapid Urban Expansion on Peri-Urban Landscapes in the Global South: Insights from Landscape Metrics in Greater Cairo," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    15. Rahman, Syed Mahbubur & Mori, Akihisa & Rahman, Syed Mustafizur, 2022. "How does climate adaptation co-benefits help scale-up solar-powered irrigation? A case of the Barind Tract, Bangladesh," Renewable Energy, Elsevier, vol. 182(C), pages 1039-1048.
    16. Milne, Russell & Anand, Madhur & Bauch, Chris T., 2023. "Preparing for and managing crown-of-thorns starfish outbreaks on reefs under threat from interacting anthropogenic stressors," Ecological Modelling, Elsevier, vol. 484(C).
    17. Hongbo Guo & Enzai Du & César Terrer & Robert B. Jackson, 2024. "Global distribution of surface soil organic carbon in urban greenspaces," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Feng, Xinhui & Wang, Sensen & Li, Yan & Yang, Jiayu & Lei, Kaige & Yuan, Weikang, 2024. "Spatial heterogeneity and driving mechanisms of carbon emissions in urban expansion areas: A research framework coupled with patterns and functions," Land Use Policy, Elsevier, vol. 143(C).
    19. Abdullah Al Mamun & Naeem Hayat & Muhammad Mohiuddin & Anas A. Salameh & Syed Shah Alam, 2023. "Green Gardening Practices Among Urban Botanists: Using the Value-Belief-Norm Model," SAGE Open, , vol. 13(3), pages 21582440231, July.
    20. Amin, Sakib Bin & Chowdhury, Mainul Islam & Jamasb, Tooraj & Khan, Farhan & Nepal, Rabindra, 2023. "Green Energy Finance and Gender Disparity: The Case of Mountain Areas in Bangladesh," Working Papers 2-2023, Copenhagen Business School, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:4090-:d:783203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.