IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i7p3760-d777211.html
   My bibliography  Save this article

N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation

Author

Listed:
  • Lidia Domínguez-Ramos

    (Departamento de Ingeniería Química, ETSE, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain
    Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain)

  • Ainoha Prieto-Estalrich

    (Departamento de Ingeniería Química, ETSE, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain)

  • Giulio Malucelli

    (Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy)

  • Diego Gómez-Díaz

    (Departamento de Ingeniería Química, ETSE, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain)

  • María Sonia Freire

    (Departamento de Ingeniería Química, ETSE, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain)

  • Massimo Lazzari

    (Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avenida das Ciencias s/n, 15782 Santiago de Compostela, Spain)

  • Julia González-Álvarez

    (Departamento de Ingeniería Química, ETSE, Universidade de Santiago de Compostela, Rua Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain)

Abstract

The CO 2 capture using adsorption can reduce the carbon footprint, increasing the sustainability of the process without the production of wastes present in commonly used industrial operations. The present research work analyses the effect of the doping-agents incorporation in carbon materials upon adsorption and separation of gases, specifically for carbon dioxide and nitrogen. The carbons precursor was polyacrylonitrile (PAN), which enabled the incorporation of nitrogen atoms in the structure, whereas sulphur doping was reached using pure sulphur after the carbonisation step. The influence of several variables (such as temperature or pressure) and characteristics of synthesised materials (mainly corresponding to surface characteristics) on carbon dioxide separation has been evaluated. Adsorption isotherms were determined for each gas (CO 2 and N 2 ) at different temperatures and pressures. Different adsorption models were evaluated to fit the experimental data. In general, the Toth isotherm described better the adsorption for both gases. Important parameters such as CO 2 /N 2 selectivity and heat of adsorption were determined using the IAS theory and the experimental isotherms at different temperatures, respectively. Non-activated carbons generated from PAN carbonisation without sulphur addition showed the highest values of selectivity (up to 400) and adsorption heat (up to 40 kJ mol −1 ), mainly at low pressures and at low carbon dioxide uptakes, respectively. Furthermore, thanks to their high adsorption capacity, these carbons can be applied for carbon dioxide separation from mixtures with nitrogen.

Suggested Citation

  • Lidia Domínguez-Ramos & Ainoha Prieto-Estalrich & Giulio Malucelli & Diego Gómez-Díaz & María Sonia Freire & Massimo Lazzari & Julia González-Álvarez, 2022. "N- and S-Doped Carbons Derived from Polyacrylonitrile for Gases Separation," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3760-:d:777211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/7/3760/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/7/3760/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hao, Wenming & Björkman, Eva & Lilliestråle, Malte & Hedin, Niklas, 2013. "Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2," Applied Energy, Elsevier, vol. 112(C), pages 526-532.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue‐Fei Wang & Long Xiong & Li Li & Jun‐Jun Zhong, 2020. "Effect of heat treatment temperature on CO2 capture of nitrogen‐enriched porous carbon fibers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 461-471, April.
    2. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    3. Álvarez-Murillo, A. & Sabio, E. & Ledesma, B. & Román, S. & González-García, C.M., 2016. "Generation of biofuel from hydrothermal carbonization of cellulose. Kinetics modelling," Energy, Elsevier, vol. 94(C), pages 600-608.
    4. Pal, Animesh & Uddin, Kutub & Saha, Bidyut Baran & Thu, Kyaw & Kil, Hyun-Sig & Yoon, Seong-Ho & Miyawaki, Jin, 2020. "A benchmark for CO2 uptake onto newly synthesized biomass-derived activated carbons," Applied Energy, Elsevier, vol. 264(C).
    5. Qian, Kezhen & Kumar, Ajay & Zhang, Hailin & Bellmer, Danielle & Huhnke, Raymond, 2015. "Recent advances in utilization of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1055-1064.
    6. Chiappero, Marco & Norouzi, Omid & Hu, Mingyu & Demichelis, Francesca & Berruti, Franco & Di Maria, Francesco & Mašek, Ondřej & Fiore, Silvia, 2020. "Review of biochar role as additive in anaerobic digestion processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Kento Torii & Mayu Hamazaki & Shoichi Kumon & Kimitaka Sato & Shogo Kato & Kiyoshi Dowaki, 2023. "A System Analysis of a Bio-Hydrogen Production System Using Granulated Mine Residue as a H 2 S Adsorbent," Energies, MDPI, vol. 16(6), pages 1-21, March.
    8. Nourhen Hsini & Vahid Saadattalab & Xia Wang & Nawres Gharred & Hatem Dhaouadi & Sonia Dridi-Dhaouadi & Niklas Hedin, 2022. "Activated Carbons Produced from Hydrothermally Carbonized Prickly Pear Seed Waste," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    9. Deneb Peredo-Mancilla & Imen Ghouma & Cecile Hort & Camelia Matei Ghimbeu & Mejdi Jeguirim & David Bessieres, 2018. "CO 2 and CH 4 Adsorption Behavior of Biomass-Based Activated Carbons," Energies, MDPI, vol. 11(11), pages 1-13, November.
    10. Mohd Danish & Vijay Parthasarthy & Mohammed K. Al Mesfer, 2021. "Comparative Study of CO 2 Capture by Adsorption in Sustainable Date Pits-Derived Porous Activated Carbon and Molecular Sieve," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    11. Lee, Jae Won & Torres Pineda, Israel & Lee, Jung Hun & Kang, Yong Tae, 2016. "Combined CO2 absorption/regeneration performance enhancement by using nanoabsorbents," Applied Energy, Elsevier, vol. 178(C), pages 164-176.
    12. Kong, Yong & Shen, Xiaodong & Cui, Sheng & Fan, Maohong, 2015. "Development of monolithic adsorbent via polymeric sol–gel process for low-concentration CO2 capture," Applied Energy, Elsevier, vol. 147(C), pages 308-317.
    13. Michela Langone & Daniele Basso, 2020. "Process Waters from Hydrothermal Carbonization of Sludge: Characteristics and Possible Valorization Pathways," IJERPH, MDPI, vol. 17(18), pages 1-33, September.
    14. Nausika Querejeta & M. Victoria Gil & Fernando Rubiera & Covadonga Pevida, 2018. "Sustainable coffee†based CO2 adsorbents: toward a greener production via hydrothermal carbonization," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(2), pages 309-323, April.
    15. Plaza, M.G. & Durán, I. & Rubiera, F. & Pevida, C., 2015. "CO2 adsorbent pellets produced from pine sawdust: Effect of coal tar pitch addition," Applied Energy, Elsevier, vol. 144(C), pages 182-192.
    16. Mulu, Elshaday & M'Arimi, Milton M. & Ramkat, Rose C., 2021. "A review of recent developments in application of low cost natural materials in purification and upgrade of biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Chen, Wan & Chen, Mengzijing & Yang, Mingke & Zou, Enbao & Li, Hai & Jia, Chongzhi & Sun, Changyu & Ma, Qinglan & Chen, Guangjin & Qin, Huibo, 2019. "A new approach to the upgrading of the traditional propylene carbonate washing process with significantly higher CO2 absorption capacity and selectivity," Applied Energy, Elsevier, vol. 240(C), pages 265-275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:7:p:3760-:d:777211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.