IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i5p2734-d759012.html
   My bibliography  Save this article

Recycling of 3D Printable Thermoplastic Cellulose-Composite

Author

Listed:
  • Kirsi Immonen

    (VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland)

  • Sini Metsä-Kortelainen

    (VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland)

  • Juha Nurmio

    (Brinter Oy, FI-20520 Turku, Finland)

  • Amélie Tribot

    (VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland)

  • Tuomas Turpeinen

    (VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland)

  • Atte Mikkelson

    (VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland)

  • Tomi Kalpio

    (Brinter Oy, FI-20520 Turku, Finland)

  • Otto-Ville Kaukoniemi

    (VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland)

  • Heli Kangas

    (VTT Technical Research Centre of Finland Ltd., FI-02044 Espoo, Finland)

Abstract

3D printing enables sustainable product innovations through novel design, reduced use of materials, and local manufacturing. Sustainable 3D printing can further be realized using recyclable materials. Cellulose is an abundantly available renewable material. Modified celluloses, such as thermoplastic cellulose esters, are widely used in injection molding applications. The aim of this research was to study the properties of a cellulose-based composite (cellulose acetate propionate (CAP) polymer matrix with 20 wt. % microcellulose) in injection molding and granular extrusion-based 3D printing processes over multiple recycles. The impact of the processing methods on the composite’s properties were investigated. Both injection molded and 3D printed samples were ground with plastic grinding mill to particle sizes below 3 mm after each preparation stage and reused as such in the next process cycle. Morphology, mechanical and thermal properties, and material degradation were analyzed. The thermoplastic cellulose-based compound was found to be directly recyclable for both processes without the need for any additional compounding steps. The polymer matrix was able to withstand at least seven processing cycles without degradation. However, microcellulose was found to be more sensitive to thermal stress. The mechanical and thermal properties of the cellulose-based composites remained close to initial levels throughout.

Suggested Citation

  • Kirsi Immonen & Sini Metsä-Kortelainen & Juha Nurmio & Amélie Tribot & Tuomas Turpeinen & Atte Mikkelson & Tomi Kalpio & Otto-Ville Kaukoniemi & Heli Kangas, 2022. "Recycling of 3D Printable Thermoplastic Cellulose-Composite," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2734-:d:759012
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/5/2734/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/5/2734/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hunt, Emily J. & Zhang, Chenlong & Anzalone, Nick & Pearce, Joshua M., 2015. "Polymer recycling codes for distributed manufacturing with 3-D printers," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 24-30.
    2. Karel Kellens & Martin Baumers & Timothy G. Gutowski & William Flanagan & Reid Lifset & Joost R. Duflou, 2017. "Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications," Journal of Industrial Ecology, Yale University, vol. 21(S1), pages 49-68, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noura Al-Mazrouei & Ali H. Al-Marzouqi & Waleed Ahmed, 2022. "Characterization and Sustainability Potential of Recycling 3D-Printed Nylon Composite Wastes," Sustainability, MDPI, vol. 14(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.
    2. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    3. Zhichao Liu & Qiuhong Jiang & Fuda Ning & Hoyeol Kim & Weilong Cong & Changxue Xu & Hong-chao Zhang, 2018. "Investigation of Energy Requirements and Environmental Performance for Additive Manufacturing Processes," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    4. Pedro Manuel Hernández-Castellano & María Dolores Martínez-Rivero & María Dolores Marrero-Alemán & Luis Suárez-García & Alejandro Gutiérrez-Barcenilla, 2020. "Open Education through Interactive Training Material," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    5. José M. González-Varona & David Poza & Fernando Acebes & Félix Villafáñez & Javier Pajares & Adolfo López-Paredes, 2020. "New Business Models for Sustainable Spare Parts Logistics: A Case Study," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    6. Šuba Roland, 2022. "Sustainability Aspects of Parts Additive Manufacturing from Metal Powder," Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Sciendo, vol. 30(50), pages 37-44, June.
    7. Jessika Luth Richter & Sahra Svensson‐Hoglund & Carl Dalhammar & Jennifer D. Russell & Åke Thidell, 2023. "Taking stock for repair and refurbishing: A review of harvesting of spare parts from electrical and electronic products," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 868-881, June.
    8. Di He & Hyung Chul Kim & Robert De Kleine & Vi Kie Soo & Alper Kiziltas & Paul Compston & Matthew Doolan, 2022. "Life cycle energy and greenhouse gas emissions implications of polyamide 12 recycling from selective laser sintering for an injection‐molded automotive component," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1378-1388, August.
    9. Francesco Del Pero & Massimo Delogu & Martin Kerschbaum, 2020. "Design of a Lightweight Rear Crash Management System in a Sustainable Perspective," Sustainability, MDPI, vol. 12(13), pages 1-20, June.
    10. Chekurov, Sergei & Metsä-Kortelainen, Sini & Salmi, Mika & Roda, Irene & Jussila, Ari, 2018. "The perceived value of additively manufactured digital spare parts in industry: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 205(C), pages 87-97.
    11. Buranská Eva & Buranský Ivan & Morovič Ladislav & Líška Katarína, 2019. "Environment and Safety Impacts of Additive Manufacturing: A Review," Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Sciendo, vol. 27(44), pages 9-20, June.
    12. Ana E. Oros Daraban & Catalin S. Negrea & Flavia G. P. Artimon & Dorin Angelescu & Gheorghe Popan & Silviu I. Gheorghe & Marian Gheorghe, 2019. "A Deep Look at Metal Additive Manufacturing Recycling and Use Tools for Sustainability Performance," Sustainability, MDPI, vol. 11(19), pages 1-20, October.
    13. Grazia Maria Cappucci & Martina Pini & Paolo Neri & Marta Marassi & Elena Bassoli & Anna Maria Ferrari, 2020. "Environmental sustainability of orthopedic devices produced with powder bed fusion," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 681-694, June.
    14. Han Wang & Martin Baumers & Shreeja Basak & Yinfeng He & Ian Ashcroft, 2022. "The impact of the risk of build failure on energy consumption in additive manufacturing," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1771-1783, October.
    15. Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & German Arana-Landín & Iker Laskurain-Iturbe, 2022. "How Do Technologies Based on Cyber–Physical Systems Affect the Environmental Performance of Products? A Comparative Study of Manufacturers’ and Customers’ Perspectives," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    16. Mahesh Gopal & Hirpa G. Lemu & Endalkachew Mosisa Gutema, 2022. "Sustainable Additive Manufacturing and Environmental Implications: Literature Review," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    17. Matt Sinclair & Leila Sheldrick & Mariale Moreno & Emma Dewberry, 2018. "Consumer Intervention Mapping—A Tool for Designing Future Product Strategies within Circular Product Service Systems," Sustainability, MDPI, vol. 10(6), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:5:p:2734-:d:759012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.