IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i17p10458-d895036.html
   My bibliography  Save this article

Characterization and Sustainability Potential of Recycling 3D-Printed Nylon Composite Wastes

Author

Listed:
  • Noura Al-Mazrouei

    (Chemical and Petroleum Engineering Department, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates)

  • Ali H. Al-Marzouqi

    (Chemical and Petroleum Engineering Department, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates)

  • Waleed Ahmed

    (Engineering Requirements Unit, UAE University, Al-Ain P.O. Box 15551, United Arab Emirates)

Abstract

The revolution of 3D-printing technology has caused an additional source of plastic waste, especially the new generation of composite filaments that are linked with the commercial fused deposition modeling process, adding pressure to find a sustainable solution to tackle the emerging waste problem. This study aims to investigate the mechanical and thermal properties of a blended recycled composite material produced by mixing two different 3D-printed reinforced composite wastes, carbon fiber CF/nylon, and glass fiber GF/nylon filaments that were mixed at different percentages using a hot extrusion procedure, tested by a tensile testing machine, and processed with five different weight ratios to study the impact of blend ratios on the material characteristics of the recycled composites and to find the optimum weight ratios with the most preferred properties. The results revealed that the maximum tensile strength of the GF/nylon composite was achieved with 60 wt%. The highest elastic modulus value was recorded at 60 wt% GF/nylon. Moreover, it was noted that at 80 wt% of GF/nylon, the ductility is at the peak value among the composites.

Suggested Citation

  • Noura Al-Mazrouei & Ali H. Al-Marzouqi & Waleed Ahmed, 2022. "Characterization and Sustainability Potential of Recycling 3D-Printed Nylon Composite Wastes," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10458-:d:895036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/17/10458/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/17/10458/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shirin Khaki & Maud Rio & Philippe Marin, 2022. "Characterization of Emissions in Fab Labs: An Additive Manufacturing Environment Issue," Sustainability, MDPI, vol. 14(5), pages 1-23, March.
    2. Mazen A. Al-Sinan & Abdulaziz A. Bubshait, 2022. "Using Plastic Sand as a Construction Material toward a Circular Economy: A Review," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    3. Jin Xu & Nengwu Zhu & Ruying Yang & Chong Yang & Pingxiao Wu, 2022. "Effects of Extracellular Polymeric Substances and Specific Compositions on Enhancement of Copper Bioleaching Efficiency from Waste Printed Circuit Boards," Sustainability, MDPI, vol. 14(5), pages 1-12, February.
    4. Haoyu Sun & Huiqi Zheng & Xiaoyang Sun & Wei Li, 2022. "Customized Investment Decisions for New and Remanufactured Products Supply Chain Based on 3D Printing Technology," Sustainability, MDPI, vol. 14(5), pages 1-21, February.
    5. Hatem Alhazmi & Faris H. Almansour & Zaid Aldhafeeri, 2021. "Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    6. Carly Jacobs & Katie Soulliere & Susan Sawyer-Beaulieu & Abir Sabzwari & Edwin Tam, 2022. "Challenges to the Circular Economy: Recovering Wastes from Simple versus Complex Products," Sustainability, MDPI, vol. 14(5), pages 1-17, February.
    7. Gye-Eun Jang & Gu-Young Cho, 2022. "Effects of Ag Current Collecting Layer Fabricated by Sputter for 3D-Printed Polymer Bipolar Plate of Ultra-Light Polymer Electrolyte Membrane Fuel Cells," Sustainability, MDPI, vol. 14(5), pages 1-9, March.
    8. Cherdsak Suksiripattanapong & Taweerat Phetprapai & Witawat Singsang & Chayakrit Phetchuay & Jaksada Thumrongvut & Wisitsak Tabyang, 2022. "Utilization of Recycled Plastic Waste in Fiber Reinforced Concrete for Eco-Friendly Footpath and Pavement Applications," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    9. Kirsi Immonen & Sini Metsä-Kortelainen & Juha Nurmio & Amélie Tribot & Tuomas Turpeinen & Atte Mikkelson & Tomi Kalpio & Otto-Ville Kaukoniemi & Heli Kangas, 2022. "Recycling of 3D Printable Thermoplastic Cellulose-Composite," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    10. Gemechu Abdissa & Abebe Ayalew & Anna Dunay & Csaba Bálint Illés, 2022. "Role of Reverse Logistics Activities in the Recycling of Used Plastic Bottled Water Waste Management," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    11. Panagiotis Karayannis & Stratos Saliakas & Ioannis Kokkinopoulos & Spyridon Damilos & Elias P. Koumoulos & Eleni Gkartzou & Julio Gomez & Constantinos Charitidis, 2022. "Facilitating Safe FFF 3D Printing: A Prototype Material Case Study," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mazen A. Al-Sinan & Abdulaziz A. Bubshait & Fatimah Alamri, 2023. "Saudi Arabia’s Journey toward Net-Zero Emissions: Progress and Challenges," Energies, MDPI, vol. 16(2), pages 1-24, January.
    2. Abdulmajeed Almadhi & Abdelhakim Abdelhadi & Rakan Alyamani, 2023. "Moving from Linear to Circular Economy in Saudi Arabia: Life-Cycle Assessment on Plastic Waste Management," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    3. Ibrahim Hakeem & Md. Akter Hosen & Mana Alyami & Shaker Qaidi & Yasin Özkılıc, 2023. "Influence of Heat–Cool Cyclic Exposure on the Performance of Fiber-Reinforced High-Strength Concrete," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    4. Jonas Keller & Carla Scagnetti & Stefan Albrecht, 2022. "The Relevance of Recyclability for the Life Cycle Assessment of Packaging Based on Design for Life Cycle," Sustainability, MDPI, vol. 14(7), pages 1-13, March.
    5. Sabah Mariyam & Logan Cochrane & Shifa Zuhara & Gordon McKay, 2022. "Waste Management in Qatar: A Systematic Literature Review and Recommendations for System Strengthening," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    6. Luiz C. Terra dos Santos & Adrielle Frimaio & Biagio F. Giannetti & Feni Agostinho & Gengyuan Liu & Cecilia M. V. B. Almeida, 2023. "Integrating Environmental, Social, and Economic Dimensions to Monitor Sustainability in the G20 Countries," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    7. Hassan Ghanem & Safwan Chahal & Jamal Khatib & Adel Elkordi, 2023. "Experimental and Numerical Investigation of the Flexural Behavior of Mortar Beams Strengthened with Recycled Plastic Mesh," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    8. Ichiro Tsuchimoto & Yuya Kajikawa, 2022. "Recycling of Plastic Waste: A Systematic Review Using Bibliometric Analysis," Sustainability, MDPI, vol. 14(24), pages 1-39, December.
    9. Walter Leal Filho & Jelena Barbir & Pınar Gökçin Özuyar & Enrique Nunez & Jose Manuel Diaz-Sarachaga & Bertrand Guillaume & Rosley Anholon & Izabela Simon Rampasso & Julia Swart & Luis Velazquez & The, 2022. "Assessing Provisions and Requirements for the Sustainable Production of Plastics: Towards Achieving SDG 12 from the Consumers’ Perspective," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    10. Asma Mecheter & Faris Tarlochan, 2023. "Fused Filament Fabrication Three-Dimensional Printing: Assessing the Influence of Geometric Complexity and Process Parameters on Energy and the Environment," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    11. Dong Mu & Shaoqing Zhang, 2021. "The Impact of Reward–Penalty Policy on Different Recycling Modes of Recyclable Resources in Residential Waste," Sustainability, MDPI, vol. 13(14), pages 1-18, July.
    12. Ho Jun Yoo & Gu Young Cho, 2022. "Effects of Humidification with NaCl Solution Mist on Electrochemical Characteristics of Polymer Electrolyte Membrane Fuel Cells," Sustainability, MDPI, vol. 14(23), pages 1-9, December.
    13. Luca Di Paolo & Simona Abbate & Eliseo Celani & Davide Di Battista & Giovanni Candeloro, 2022. "Carbon Footprint of Single-Use Plastic Items and Their Substitution," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    14. Rahaf Ajaj & Wisam Abu Jadayil & Hamna Anver & Eman Aqil, 2022. "A Revision for the Different Reuses of Polyethylene Terephthalate (PET) Water Bottles," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    15. Ma. Cristine Concepcion D. Ignacio & Kurt A. Rosentrater & Dirk E. Maier, 2023. "Estimating Environmental and Economic Impacts of Hermetic Bag Storage Technology," Sustainability, MDPI, vol. 15(20), pages 1-19, October.
    16. Yousif Saad Alshebly & Khameel B. Mustapha & Ali Zolfagharian & Mahdi Bodaghi & Mohamed Sultan Mohamed Ali & Haider Abbas Almurib & Marwan Nafea, 2022. "Bioinspired Pattern-Driven Single-Material 4D Printing for Self-Morphing Actuators," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    17. Justus Poschmann & Vanessa Bach & Matthias Finkbeiner, 2023. "Decarbonization Potentials for Automotive Supply Chains: Emission-Intensity Pathways of Carbon-Intensive Hotspots of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(15), pages 1-20, July.
    18. Xuemei Zhang & Jian Cao & Yang Zhao & Jiansha Lu, 2022. "Fairness Concern in Remanufacturing Supply Chain—A Comparative Analysis of Channel Members’ Fairness Preferences," Sustainability, MDPI, vol. 14(7), pages 1-23, March.
    19. José M. Lorente-Mento & Juan M. Valverde & María Serrano & María T. Pretel, 2022. "Fresh-Cut Salads: Consumer Acceptance and Quality Parameter Evolution during Storage in Domestic Refrigerators," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    20. Jaksada Thumrongvut & Sittichai Seangatith & Chayakrit Phetchuay & Cherdsak Suksiripattanapong, 2022. "Comparative Experimental Study of Sustainable Reinforced Portland Cement Concrete and Geopolymer Concrete Beams Using Rice Husk Ash," Sustainability, MDPI, vol. 14(16), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:17:p:10458-:d:895036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.