IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i19p5494-d273421.html
   My bibliography  Save this article

A Deep Look at Metal Additive Manufacturing Recycling and Use Tools for Sustainability Performance

Author

Listed:
  • Ana E. Oros Daraban

    (National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM), Bucharest 021631, Romania
    Faculty of Industrial Engineering and Robotics, The University Politehnica of Bucharest, Bucharest 060042, Romania)

  • Catalin S. Negrea

    (National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM), Bucharest 021631, Romania
    Faculty of Industrial Engineering and Robotics, The University Politehnica of Bucharest, Bucharest 060042, Romania)

  • Flavia G. P. Artimon

    (National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM), Bucharest 021631, Romania
    Faculty of Industrial Engineering and Robotics, The University Politehnica of Bucharest, Bucharest 060042, Romania)

  • Dorin Angelescu

    (National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM), Bucharest 021631, Romania)

  • Gheorghe Popan

    (National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM), Bucharest 021631, Romania)

  • Silviu I. Gheorghe

    (National Institute of Research and Development in Mechatronics and Measurement Technique (INCDMTM), Bucharest 021631, Romania)

  • Marian Gheorghe

    (Faculty of Industrial Engineering and Robotics, The University Politehnica of Bucharest, Bucharest 060042, Romania)

Abstract

The present study refers to 3D metal additive manufacturing (MAM) from an interdisciplinary perspective, providing an overview on sustainability, basic principles, and a conceptual framework on environmental performance, implicit constraints regarding materials, recycling and use/reuse tools for extended life cycle, regarded as the trendiest manufacturing processes in terms of material consumptions efficacy and energy efficiency. The demand for integrating MAM technology as a means to boosting sustainability in industry is based on its capacity to use smart or custom-designed materials to generate special geometries, unobtainable otherwise, allowing for further part optimisation or redesign. The outlined advantages and challenges of the new MAM processes and advanced technologies for functional objects and durable products underline the high interest in this area. Results from the literature and our MAM research interest indicate that some metal powder (MP) recycling and use/reuse technologies could be developed to save MP, as could MAM applications in component redesign and repairs to increase sustainability. The achievement has a high degree of generality and serves as a basis for future MAM sustainable methods.

Suggested Citation

  • Ana E. Oros Daraban & Catalin S. Negrea & Flavia G. P. Artimon & Dorin Angelescu & Gheorghe Popan & Silviu I. Gheorghe & Marian Gheorghe, 2019. "A Deep Look at Metal Additive Manufacturing Recycling and Use Tools for Sustainability Performance," Sustainability, MDPI, vol. 11(19), pages 1-20, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5494-:d:273421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/19/5494/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/19/5494/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marc A. Rosen & Hossam A. Kishawy, 2012. "Sustainable Manufacturing and Design: Concepts, Practices and Needs," Sustainability, MDPI, vol. 4(2), pages 1-21, January.
    2. Mellor, Stephen & Hao, Liang & Zhang, David, 2014. "Additive manufacturing: A framework for implementation," International Journal of Production Economics, Elsevier, vol. 149(C), pages 194-201.
    3. Schniederjans, Dara G., 2017. "Adoption of 3D-printing technologies in manufacturing: A survey analysis," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 287-298.
    4. Karel Kellens & Martin Baumers & Timothy G. Gutowski & William Flanagan & Reid Lifset & Joost R. Duflou, 2017. "Environmental Dimensions of Additive Manufacturing: Mapping Application Domains and Their Environmental Implications," Journal of Industrial Ecology, Yale University, vol. 21(S1), pages 49-68, November.
    5. Chekurov, Sergei & Metsä-Kortelainen, Sini & Salmi, Mika & Roda, Irene & Jussila, Ari, 2018. "The perceived value of additively manufactured digital spare parts in industry: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 205(C), pages 87-97.
    6. Warren Kerley & David C. Wynn & Claudia Eckert & P. John Clarkson, 2011. "Redesigning the design process through interactive simulation: a case study of life-cycle engineering in jet engine conceptual design," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 10(1), pages 30-51.
    7. Gebler, Malte & Schoot Uiterkamp, Anton J.M. & Visser, Cindy, 2014. "A global sustainability perspective on 3D printing technologies," Energy Policy, Elsevier, vol. 74(C), pages 158-167.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gokan May & Foivos Psarommatis, 2023. "Maximizing Energy Efficiency in Additive Manufacturing: A Review and Framework for Future Research," Energies, MDPI, vol. 16(10), pages 1-28, May.
    2. Gaurav Gaurav & Govind Sharan Dangayach & Makkhan Lal Meena & Vijay Chaudhary & Sumit Gupta & Sandeep Jagtap, 2023. "The Environmental Impacts of Bar Soap Production: Uncovering Sustainability Risks with LCA Analysis," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    3. Luis Isasi-Sanchez & Jesus Morcillo-Bellido & Jose Ignacio Ortiz-Gonzalez & Alfonso Duran-Heras, 2020. "Synergic Sustainability Implications of Additive Manufacturing in Automotive Spare Parts: A Case Analysis," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    4. Hossein Eskandari Sabzi & Pedro E. J. Rivera-Díaz-del-Castillo, 2023. "Sustainable Powder-Based Additive Manufacturing Technology," Sustainability, MDPI, vol. 15(20), pages 1-15, October.
    5. Inês Ribeiro & Florinda Matos & Celeste Jacinto & Hafiz Salman & Gonçalo Cardeal & Helena Carvalho & Radu Godina & Paulo Peças, 2020. "Framework for Life Cycle Sustainability Assessment of Additive Manufacturing," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    6. Radu Godina & Inês Ribeiro & Florinda Matos & Bruna T. Ferreira & Helena Carvalho & Paulo Peças, 2020. "Impact Assessment of Additive Manufacturing on Sustainable Business Models in Industry 4.0 Context," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    7. Stavros Ponis & Eleni Aretoulaki & Theodoros Nikolaos Maroutas & George Plakas & Konstantina Dimogiorgi, 2021. "A Systematic Literature Review on Additive Manufacturing in the Context of Circular Economy," Sustainability, MDPI, vol. 13(11), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chekurov, Sergei & Metsä-Kortelainen, Sini & Salmi, Mika & Roda, Irene & Jussila, Ari, 2018. "The perceived value of additively manufactured digital spare parts in industry: An empirical investigation," International Journal of Production Economics, Elsevier, vol. 205(C), pages 87-97.
    2. Holzmann, Patrick & Breitenecker, Robert J. & Schwarz, Erich J. & Gregori, Patrick, 2020. "Business model design for novel technologies in nascent industries: An investigation of 3D printing service providers," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    3. José M. González-Varona & David Poza & Fernando Acebes & Félix Villafáñez & Javier Pajares & Adolfo López-Paredes, 2020. "New Business Models for Sustainable Spare Parts Logistics: A Case Study," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    4. Inês Ribeiro & Florinda Matos & Celeste Jacinto & Hafiz Salman & Gonçalo Cardeal & Helena Carvalho & Radu Godina & Paulo Peças, 2020. "Framework for Life Cycle Sustainability Assessment of Additive Manufacturing," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    5. Foshammer, Jeppe & Søberg, Peder Veng & Helo, Petri & Ituarte, Iñigo Flores, 2022. "Identification of aftermarket and legacy parts suitable for additive manufacturing: A knowledge management-based approach," International Journal of Production Economics, Elsevier, vol. 253(C).
    6. Naghshineh, Bardia & Carvalho, Helena, 2022. "The implications of additive manufacturing technology adoption for supply chain resilience: A systematic search and review," International Journal of Production Economics, Elsevier, vol. 247(C).
    7. Beltagui, Ahmad & Kunz, Nathan & Gold, Stefan, 2020. "The role of 3D printing and open design on adoption of socially sustainable supply chain innovation," International Journal of Production Economics, Elsevier, vol. 221(C).
    8. Robert B. Handfield & James Aitken & Neil Turner & Tillmann Boehme & Cecil Bozarth, 2022. "Assessing Adoption Factors for Additive Manufacturing: Insights from Case Studies," Logistics, MDPI, vol. 6(2), pages 1-22, June.
    9. Kleer, Robin & Piller, Frank T., 2019. "Local manufacturing and structural shifts in competition: Market dynamics of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 216(C), pages 23-34.
    10. Evgenii A. Konnikov & Olga A. Konnikova & Dmitriy G. Rodionov, 2019. "Impact of 3D-Printing Technologies on the Transformation of Industrial Production in the Arctic Zone," Resources, MDPI, vol. 8(1), pages 1-15, January.
    11. Dmitriy Grigorievich Rodionov* & Evgenii Alexandrovich Konnikov & Olga Anatolievna Konnikova, 2018. "Approaches to Ensuring the Sustainability of Industrial Enterprises of Different Technological Levels," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 277-282:3.
    12. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.
    13. Turkcan, Hulya & Imamoglu, Salih Zeki & Ince, Huseyin, 2022. "To be more innovative and more competitive in dynamic environments: The role of additive manufacturing," International Journal of Production Economics, Elsevier, vol. 246(C).
    14. Nazanin Hosseini Arian & Alireza Pooya & Fariborz Rahimnia & Ali Sibevei, 2021. "Assessment the effect of rapid prototyping implementation on supply chain sustainability: a system dynamics approach," Operations Management Research, Springer, vol. 14(3), pages 467-493, December.
    15. Ukobitz, Desirée Valeria & Faullant, Rita, 2022. "The relative impact of isomorphic pressures on the adoption of radical technology: Evidence from 3D printing," Technovation, Elsevier, vol. 113(C).
    16. Caviggioli, Federico & Ughetto, Elisa, 2019. "A bibliometric analysis of the research dealing with the impact of additive manufacturing on industry, business and society," International Journal of Production Economics, Elsevier, vol. 208(C), pages 254-268.
    17. Beltagui, Ahmad & Gold, Stefan & Kunz, Nathan & Reiner, Gerald, 2023. "Special Issue: Rethinking operations and supply chain management in light of the 3D printing revolution," International Journal of Production Economics, Elsevier, vol. 255(C).
    18. Naghshineh, Bardia & Ribeiro, André & Jacinto, Celeste & Carvalho, Helena, 2021. "Social impacts of additive manufacturing: A stakeholder-driven framework," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    19. Jiang, Ruth & Kleer, Robin & Piller, Frank T., 2017. "Predicting the future of additive manufacturing: A Delphi study on economic and societal implications of 3D printing for 2030," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 84-97.
    20. Stornelli, Aldo & Ozcan, Sercan & Simms, Christopher, 2021. "Advanced manufacturing technology adoption and innovation: A systematic literature review on barriers, enablers, and innovation types," Research Policy, Elsevier, vol. 50(6).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:19:p:5494-:d:273421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.