IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2298-d751945.html
   My bibliography  Save this article

Reducing the Environmental Impacts of Desalination Reject Brine Using Modified Solvay Process Based on Calcium Oxide

Author

Listed:
  • Tahereh Setayeshmanesh

    (Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13798, Iran)

  • Mohammad Mehdi Parivazh

    (Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran)

  • Mohsen Abbasi

    (Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13798, Iran)

  • Shahriar Osfouri

    (Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13798, Iran)

  • Mohammad Javad Dianat

    (Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13798, Iran)

  • Mohammad Akrami

    (Department of Engineering, University of Exeter, Exeter EX4 4QF, UK)

Abstract

In this research, the influence of a variety of operational factors such as the temperature of the reaction, gas flow rate, concentration of NaCl, and the amount of Ca(OH) 2 for reducing the environmental impacts of desalination reject brine using the calcium oxide-based modified Solvay process were investigated. For this purpose, response surface modeling (RSM) and central composite design (CCD) were applied. The significance of these factors and their interactions was assessed using an analysis of variance (ANOVA) technique with a 95% degree of certainty ( p < 0.05). Optimal conditions for this process included: a temperature of 10 °C, a Ca(OH) 2 /NaCl concentration ratio of 0.36, and a gas flow rate of 800 mL/min. Under these conditions, the maximum sodium removal efficiency from the synthetic sodium chloride solution was 53.51%. Subsequently, by employing the real brine rejected from the desalination unit with a 63 g/L salinity level under optimal conditions, the removal rate of sodium up to 43% was achieved. To investigate the process’s kinetics of Na elimination, three different kinds of kinetics models were applied from zero to second order. R squared values of 0.9101, 0.915, and 0.9141 were obtained in this investigation for zero-, first-, and second-degree kinetic models, respectively, when synthetic reject saline reacted. In contrast, according to R squared’s results with utilizing real rejected brine, the results for the model of kinetics were: R squared = 0.9115, 0.9324, and 0.9532, correspondingly. As a result, the elimination of sodium from real reject brine is consistent with the second-order kinetic model. According to the findings, the calcium oxide-based modified Solvay method offers a great deal of promise for desalination of brine rejected from desalination units and reducing their environmental impacts. The primary benefit of this technology is producing a usable solid product (sodium bicarbonate) from sodium chloride in the brine solution.

Suggested Citation

  • Tahereh Setayeshmanesh & Mohammad Mehdi Parivazh & Mohsen Abbasi & Shahriar Osfouri & Mohammad Javad Dianat & Mohammad Akrami, 2022. "Reducing the Environmental Impacts of Desalination Reject Brine Using Modified Solvay Process Based on Calcium Oxide," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2298-:d:751945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2298/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2298/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    2. Dindi, Abdallah & Quang, Dang Viet & Abu-Zahra, Mohammad R.M., 2015. "Simultaneous carbon dioxide capture and utilization using thermal desalination reject brine," Applied Energy, Elsevier, vol. 154(C), pages 298-308.
    3. Ameera F. Mohammad & Ali H. Al-Marzouqi & Muftah H. El-Naas & Bart Van der Bruggen & Mohamed H. Al-Marzouqi, 2021. "A New Process for the Recovery of Ammonia from Ammoniated High-Salinity Brine," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    4. Elgallal, M. & Fletcher, L. & Evans, B., 2016. "Assessment of potential risks associated with chemicals in wastewater used for irrigation in arid and semiarid zones: A review," Agricultural Water Management, Elsevier, vol. 177(C), pages 419-431.
    5. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    6. Aya A-H. I. Mourad & Ameera F. Mohammad & Ali H. Al-Marzouqi & Muftah H. El-Naas & Mohamed H. Al-Marzouqi & Mohammednoor Altarawneh, 2021. "KOH-Based Modified Solvay Process for Removing Na Ions from High Salinity Reject Brine at High Temperatures," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adnan, Muflih A. & Kibria, Md Golam, 2020. "Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways," Applied Energy, Elsevier, vol. 278(C).
    2. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    3. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    7. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    8. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    9. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    10. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    11. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    12. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    13. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    14. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    15. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    16. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    17. Chamberlin Stéphane Azebaze Mboving & Zbigniew Hanzelka & Andrzej Firlit, 2022. "Analysis of the Factors Having an Influence on the LC Passive Harmonic Filter Work Efficiency," Energies, MDPI, vol. 15(5), pages 1-51, March.
    18. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    19. Biranchi Panda & K. Shankhwar & Akhil Garg & M. M. Savalani, 2019. "Evaluation of genetic programming-based models for simulating bead dimensions in wire and arc additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 809-820, February.
    20. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2298-:d:751945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.