IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i4p2201-d749750.html
   My bibliography  Save this article

Optimal Design of a Hybrid Solar PV/BG-Powered Heterogeneous Network

Author

Listed:
  • Md. Sanwar Hossain

    (Department of Electrical and Electronic Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh)

  • Khondoker Ziaul Islam

    (Discipline of Information Technology, Murdoch University, Murdoch, WA 6150, Australia)

  • Abdullah G. Alharbi

    (Department of Electrical Engineering, Faculty of Engineering, Jouf University, Sakaka 42421, Saudi Arabia)

  • Md Shafiullah

    (Interdisciplinary Research Center for Renewable Energy and Power Systems, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Md. Rabiul Islam

    (School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Sydney, NSW 2522, Australia)

  • Afef Fekih

    (Department of Electrical and Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA)

Abstract

The increased penetration of renewable energy sources (RESs) along with the rise in demand for wireless communication had led to the need to deploy cellular base stations powered by locally accessible RESs. Moreover, networks powered by renewable energy sources have the ability to reduce the costs of generating electricity, as well as greenhouse gas emissions, thus maintaining the quality of service (QoS). This paper examines the techno-economic feasibility of developing grid-tied solar photovoltaic (PV)/biomass generator (BG)-powered heterogeneous networks in Bangladesh, taking into account the dynamic characteristics of RESs and traffic. To guarantee QoS, each macro and micro-base station is supplied through a hybrid solar PV/BG coupled with enough energy storage devices. In contrast, pico and femto BSs are powered through standalone solar PV units due to their smaller power rating. A hybrid optimization model for electric renewables (HOMER)-based optimization algorithm is considered to determine the optimum system architecture, economic and environmental analysis. MATLAB-based Monte-Carlo simulations are used to assess the system’s throughput and energy efficiency. A new weighted proportional-fair resource method is presented by trading power consumption and communication latency in non-real-time applications. Performance analysis of the proposed architecture confirmed its energy efficiency, economic soundness, reliability, and environmental friendliness. Additionally, the suggested method was shown to increase the battery life of the end devices.

Suggested Citation

  • Md. Sanwar Hossain & Khondoker Ziaul Islam & Abdullah G. Alharbi & Md Shafiullah & Md. Rabiul Islam & Afef Fekih, 2022. "Optimal Design of a Hybrid Solar PV/BG-Powered Heterogeneous Network," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2201-:d:749750
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/4/2201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/4/2201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halder, P.K. & Paul, N. & Beg, M.R.A., 2014. "Assessment of biomass energy resources and related technologies practice in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 444-460.
    2. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    3. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Energy Optimization Strategies for Eco-Friendly Cellular Base Stations," Energies, MDPI, vol. 11(6), pages 1-22, June.
    4. Md. Sanwar Hossain & Khondoker Ziaul Islam & Abu Jahid & Khondokar Mizanur Rahman & Sarwar Ahmed & Mohammed H. Alsharif, 2020. "Renewable Energy-Aware Sustainable Cellular Networks with Load Balancing and Energy-Sharing Technique," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    5. Mohammed H. Alsharif, 2017. "Techno-Economic Evaluation of a Stand-Alone Power System Based on Solar Power/Batteries for Global System for Mobile Communications Base Stations," Energies, MDPI, vol. 10(3), pages 1-20, March.
    6. Islam, Md Shahinur & Akhter, Ruma & Rahman, Mohammad Ashifur, 2018. "A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural ," Energy, Elsevier, vol. 145(C), pages 338-355.
    7. Mohammed Ahiduzzaman & Abul K. M. Sadrul Islam, 2009. "Energy Utilization and Environmental Aspects of Rice Processing Industries in Bangladesh," Energies, MDPI, vol. 2(1), pages 1-16, March.
    8. Margaret Amutha, W. & Rajini, V., 2015. "Techno-economic evaluation of various hybrid power systems for rural telecom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 553-561.
    9. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    10. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    11. Alsharif, Mohammed H. & Nordin, Rosdiadee & Ismail, Mahamod, 2016. "Green wireless network optimisation strategies within smart grid environments for Long Term Evolution (LTE) cellular networks in Malaysia," Renewable Energy, Elsevier, vol. 85(C), pages 157-170.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaila Arif & Ata E Rabbi & Shams Uddin Ahmed & Molla Shahadat Hossain Lipu & Taskin Jamal & Tareq Aziz & Mahidur R. Sarker & Amna Riaz & Talal Alharbi & Muhammad Majid Hussain, 2022. "Enhancement of Solar PV Hosting Capacity in a Remote Industrial Microgrid: A Methodical Techno-Economic Approach," Sustainability, MDPI, vol. 14(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Sanwar Hossain & Khondoker Ziaul Islam & Abu Jahid & Khondokar Mizanur Rahman & Sarwar Ahmed & Mohammed H. Alsharif, 2020. "Renewable Energy-Aware Sustainable Cellular Networks with Load Balancing and Energy-Sharing Technique," Sustainability, MDPI, vol. 12(22), pages 1-33, November.
    2. Md. Sanwar Hossain & Abu Jahid & Khondoker Ziaul Islam & Mohammed H. Alsharif & Md. Fayzur Rahman, 2020. "Multi-Objective Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Green Cellular Networks," Sustainability, MDPI, vol. 12(9), pages 1-35, April.
    3. Md. Sanwar Hossain & Abdullah G. Alharbi & Khondoker Ziaul Islam & Md. Rabiul Islam, 2021. "Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication," Sustainability, MDPI, vol. 13(22), pages 1-29, November.
    4. Khondoker Ziaul Islam & Md. Sanwar Hossain & B. M. Ruhul Amin & G. M. Shafiullah & Ferdous Sohel, 2022. "Renewable Energy-Based Energy-Efficient Off-Grid Base Stations for Heterogeneous Network," Energies, MDPI, vol. 16(1), pages 1-33, December.
    5. Islam, Md Shahinur & Akhter, Ruma & Rahman, Mohammad Ashifur, 2018. "A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural ," Energy, Elsevier, vol. 145(C), pages 338-355.
    6. Banjo A. Aderemi & S. P. Daniel Chowdhury & Thomas O. Olwal & Adnan M. Abu-Mahfouz, 2018. "Techno-Economic Feasibility of Hybrid Solar Photovoltaic and Battery Energy Storage Power System for a Mobile Cellular Base Station in Soshanguve, South Africa," Energies, MDPI, vol. 11(6), pages 1-26, June.
    7. Mohammed W. Baidas & Mastoura F. Almusailem & Rashad M. Kamel & Sultan Sh. Alanzi, 2022. "Renewable-Energy-Powered Cellular Base-Stations in Kuwait’s Rural Areas," Energies, MDPI, vol. 15(7), pages 1-29, March.
    8. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Sarker, M., 2015. "Energy scarcity and potential of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1636-1649.
    9. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    10. Mohammed H. Alsharif, 2017. "Comparative Analysis of Solar-Powered Base Stations for Green Mobile Networks," Energies, MDPI, vol. 10(8), pages 1-25, August.
    11. Monirul Islam Miskat & Ashfaq Ahmed & Hemal Chowdhury & Tamal Chowdhury & Piyal Chowdhury & Sadiq M. Sait & Young-Kwon Park, 2020. "Assessing the Theoretical Prospects of Bioethanol Production as a Biofuel from Agricultural Residues in Bangladesh: A Review," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    12. Hil Baky, Md. Abdullah & Rahman, Md. Mustafizur & Islam, A.K.M. Sadrul, 2017. "Development of renewable energy sector in Bangladesh: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1184-1197.
    13. Baul, T.K. & Datta, D. & Alam, A., 2018. "A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh," Energy Policy, Elsevier, vol. 114(C), pages 598-608.
    14. Khan, Ershad Ullah & Martin, Andrew R., 2016. "Review of biogas digester technology in rural Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 247-259.
    15. Dilip Khatiwada & Pallav Purohit & Emmanuel Kofi Ackom, 2019. "Mapping Bioenergy Supply and Demand in Selected Least Developed Countries (LDCs): Exploratory Assessment of Modern Bioenergy’s Contribution to SDG7," Sustainability, MDPI, vol. 11(24), pages 1-29, December.
    16. Akter, Mst. Mahmoda & Surovy, Israt Zahan & Sultana, Nazmin & Faruk, Md. Omar & Gilroyed, Brandon H. & Tijing, Leonard & Arman, & Didar-ul-Alam, Md. & Shon, Ho Kyong & Nam, Sang Yong & Kabir, Mohammad, 2024. "Techno-economics and environmental sustainability of agricultural biomass-based energy potential," Applied Energy, Elsevier, vol. 359(C).
    17. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    18. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2017. "Green and Sustainable Cellular Base Stations: An Overview and Future Research Directions," Energies, MDPI, vol. 10(5), pages 1-27, April.
    19. Islam, Md. Tasbirul & Shahir, S.A. & Uddin, T.M. Iftakhar & Saifullah, A.Z.A, 2014. "Current energy scenario and future prospect of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1074-1088.
    20. Rajanna, S. & Saini, R.P., 2016. "Modeling of integrated renewable energy system for electrification of a remote area in India," Renewable Energy, Elsevier, vol. 90(C), pages 175-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:4:p:2201-:d:749750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.