IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p4193-d360687.html
   My bibliography  Save this article

Review of the Reuse Possibilities Concerning Ash Residues from Thermal Process in a Medium-Sized Urban System in Northern Italy

Author

Listed:
  • Ahmad Assi

    (INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

  • Fabjola Bilo

    (INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

  • Alessandra Zanoletti

    (INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

  • Jessica Ponti

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Andrea Valsesia

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Rita La Spina

    (European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy)

  • Laura E. Depero

    (INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

  • Elza Bontempi

    (INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy)

Abstract

This review paper reports a detailed characterization of some combustion or incineration residues and by-products produced in a medium-sized city in Northern Italy. The municipal solid waste incineration (MSWI) generates fly ash, which is a toxic waste. Coal fly ash (CFA) and flue gas desulfurization (FGD) derive from the thermoelectric coal plant located in the same city. Along with these ashes, silica fume and rice husk ash are also considered for the stabilization of fly ash based on their amorphous silica content with the aim to convert them into an inert material. The characterization of all the investigated ashes was performed using different techniques: X-ray diffraction, total reflection X-ray fluorescence, scanning electron microscopy, and transmission electron microscopy. The aim of this work is to describe the reuse possibilities that were proposed for these ashes, which were determined also on the basis of their structural properties. Several possible applications of the investigated ashes are proposed, and the most suitable reuse of stabilized fly ash samples seems to be the production of sustainable plastic composites. This paper shows that the reuse of the by-product materials can allow natural resources to be preserved following the principles of a circular economy.

Suggested Citation

  • Ahmad Assi & Fabjola Bilo & Alessandra Zanoletti & Jessica Ponti & Andrea Valsesia & Rita La Spina & Laura E. Depero & Elza Bontempi, 2020. "Review of the Reuse Possibilities Concerning Ash Residues from Thermal Process in a Medium-Sized Urban System in Northern Italy," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4193-:d:360687
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/4193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/4193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Jinman & Yang, Peiling, 2018. "Potential flue gas desulfurization gypsum utilization in agriculture: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 1969-1978.
    2. Dou, Xiaomin & Ren, Fei & Nguyen, Minh Quan & Ahamed, Ashiq & Yin, Ke & Chan, Wei Ping & Chang, Victor Wei-Chung, 2017. "Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 24-38.
    3. Hanna Cho & Sang-woo Ji & Hee-young Shin & Hwanju Jo, 2019. "A Case Study of Environmental Policies and Guidelines for the Use of Coal Ash as Mine Reclamation Filler: Relevance for Needed South Korean Policy Updates," Sustainability, MDPI, vol. 11(13), pages 1-13, July.
    4. Wang, Yi & Xia, Tian Dong & Feng, Hui Xia & Zhang, Han, 2011. "Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 36(6), pages 1814-1820.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eleonora Fiore & Barbara Stabellini & Paolo Tamborrini, 2020. "A Systemic Design Approach Applied to Rice and Wine Value Chains. The Case of the InnovaEcoFood Project in Piedmont (Italy)," Sustainability, MDPI, vol. 12(21), pages 1-28, November.
    2. Alessandra Zanoletti & Luca Ciacci, 2022. "The Reuse of Municipal Solid Waste Fly Ash as Flame Retardant Filler: A Preliminary Study," Sustainability, MDPI, vol. 14(4), pages 1-11, February.
    3. Maria Bostenaru Dan & Magdalena Maria Bostenaru-Dan, 2021. "Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    4. Catalina Dimulescu & Adrian Burlacu, 2021. "Industrial Waste Materials as Alternative Fillers in Asphalt Mixtures," Sustainability, MDPI, vol. 13(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hang Zhao & Yang Tian & Rong Wang & Rui Wang & Xiangfei Zeng & Feihua Yang & Zhaojia Wang & Mengjun Chen & Jiancheng Shu, 2021. "Seasonal Variation of the Mobility and Toxicity of Metals in Beijing’s Municipal Solid Waste Incineration Fly Ash," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
    2. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    3. Wang, Yunming & Tang, Bingtao & Zhang, Shufen, 2014. "Organic, cross-linking, and shape-stabilized solar thermal energy storage materials: A reversible phase transition driven by broadband visible light," Applied Energy, Elsevier, vol. 113(C), pages 59-66.
    4. Tharaka Gunaratne & Joakim Krook & Hans Andersson, 2020. "Current Practice of Managing the Waste of the Waste: Policy, Market, and Organisational Factors Influencing Shredder Fines Management in Sweden," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    5. Marco Abis & Martina Bruno & Kerstin Kuchta & Franz-Georg Simon & Raul Grönholm & Michel Hoppe & Silvia Fiore, 2020. "Assessment of the Synergy between Recycling and Thermal Treatments in Municipal Solid Waste Management in Europe," Energies, MDPI, vol. 13(23), pages 1-15, December.
    6. Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
    7. Tong, Huanhuan & Yao, Zhiyi & Lim, Jun Wei & Mao, Liwei & Zhang, Jingxing & Ge, Tian Shu & Peng, Ying Hong & Wang, Chi-Hwa & Tong, Yen Wah, 2018. "Harvest green energy through energy recovery from waste: A technology review and an assessment of Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 163-178.
    8. Cai, Yibing & Gao, Chuntao & Zhang, Ting & Zhang, Zhen & Wei, Qufu & Du, Jinmei & Hu, Yuan & Song, Lei, 2013. "Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats," Renewable Energy, Elsevier, vol. 57(C), pages 163-170.
    9. Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
    10. Golestaneh, Seyyed Iman & Karimi, Gholamreza & Babapoor, Aziz & Torabi, Farshid, 2018. "Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles," Applied Energy, Elsevier, vol. 212(C), pages 552-564.
    11. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    12. Wang, Miao & Li, Pan & Yu, Faquan, 2021. "Hierarchical porous carbon foam-based phase change composite with enhanced loading capacity and thermal conductivity for efficient thermal energy storage," Renewable Energy, Elsevier, vol. 172(C), pages 599-605.
    13. Einara Blanco Machin & Daniel Travieso Pedroso & Daviel Gómez Acosta & Maria Isabel Silva dos Santos & Felipe Solferini de Carvalho & Adrian Blanco Machín & Matías Abner Neira Ortíz & Reinaldo Sánchez, 2022. "Techno-Economic and Environmental Assessment of Municipal Solid Waste Energetic Valorization," Energies, MDPI, vol. 15(23), pages 1-17, November.
    14. Ushak, Svetlana & Suárez, Miriam & Véliz, Sussy & Fernández, Angel G. & Flores, Elsa & Galleguillos, Héctor R., 2016. "Characterization of calcium chloride tetrahydrate as a phase change material and thermodynamic analysis of the results," Renewable Energy, Elsevier, vol. 95(C), pages 213-224.
    15. Ling Xu & Yinfei Du & Giuseppe Loprencipe & Laura Moretti, 2023. "Rheological and Fatigue Characteristics of Asphalt Mastics and Mixtures Containing Municipal Solid Waste Incineration (MSWI) Residues," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    16. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    17. Yu, Kunyang & Liu, Yushi & Yang, Yingzi, 2021. "Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties," Applied Energy, Elsevier, vol. 292(C).
    18. Hyunsoo Kim & Oyunbileg Purev & Kanghee Cho & Nagchoul Choi & Jaewon Lee & Seongjin Yoon, 2022. "Removal of Inorganic Salts in Municipal Solid Waste Incineration Fly Ash Using a Washing Ejector and Its Application for CO 2 Capture," IJERPH, MDPI, vol. 19(4), pages 1-15, February.
    19. Yuan, Yanping & Zhang, Nan & Tao, Wenquan & Cao, Xiaoling & He, Yaling, 2014. "Fatty acids as phase change materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 482-498.
    20. Zhang, Zhengguo & Shi, Guoquan & Wang, Shuping & Fang, Xiaoming & Liu, Xiaohong, 2013. "Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material," Renewable Energy, Elsevier, vol. 50(C), pages 670-675.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:4193-:d:360687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.