IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15464-d979420.html
   My bibliography  Save this article

Soil Management in Indigenous Agroforestry Systems of Guarana ( Paullinia cupana Kunth) of the Sateré-Mawé Ethnic Group, in the Lower Amazon River Region

Author

Listed:
  • Clara Peres Vignoli

    (National Institute of Amazonian Research, Manaus 69067-375, Brazil)

  • Johannes Leeuwen

    (National Institute of Amazonian Research, Manaus 69067-375, Brazil)

  • Robert Pritchard Miller

    (Instituto Sociedade, População e Natureza (ISPN), Brasilia 70750-515, Brazil)

  • César Augusto Ticona-Benavente

    (National Institute of Amazonian Research, Manaus 69067-375, Brazil)

  • Bárbara Vieira da Silva

    (National Institute of Amazonian Research, Manaus 69067-375, Brazil)

  • Bruno Striffler

    (National Institute of Amazonian Research, Manaus 69067-375, Brazil)

  • José Guedes Fernandes Neto

    (National Institute of Amazonian Research, Manaus 69067-375, Brazil
    Applied Ecology Graduate Program, University of São Paulo, São Paulo 05508-060, Brazil)

  • Sonia Sena Alfaia

    (National Institute of Amazonian Research, Manaus 69067-375, Brazil)

Abstract

The Sateré-Mawé Brazilian indigenous people cultivate the guarana liana in biodiverse agroforests that incorporate many species, mainly trees, and produce food, medicines, fuel and income. The objective of this study was to evaluate the soil fertility in nineteen indigenous guarana agroforestry systems (AFSs) compared with areas of adjacent forests in the Andirá–Marau Indigenous Land—an ancestral territory of the Sateré-Mawé people. Soils in both locations showed low natural fertility, with levels of most macronutrients below the minimum agronomic reference levels. Higher C and soil organic matter (SOM) content was observed in the forest soils and may be related to greater vegetation cover and higher litter production. However, the maintenance of the average levels of most nutrients in the soil of the AFSs, at the same level as under the forests, suggests that efficient nutrient cycling is taking place. In these conditions, the management of organic matter seems to be essential to maintain the productivity of guarana AFSs since levels of C, SOM and organic N were not considered as low as those of most of the other soil attributes that were evaluated. The high tree diversity in the guarana agroforests, including N-fixing species, may also contribute to efficient nutrient cycling and maintenance of the soil food web. The results suggest that the addition of limestone, green manure practices and the reincorporation of organic residues from guarana processing, among other sources, can be a low-cost alternative to improve soil fertility and increase guarana production in the AFS under study.

Suggested Citation

  • Clara Peres Vignoli & Johannes Leeuwen & Robert Pritchard Miller & César Augusto Ticona-Benavente & Bárbara Vieira da Silva & Bruno Striffler & José Guedes Fernandes Neto & Sonia Sena Alfaia, 2022. "Soil Management in Indigenous Agroforestry Systems of Guarana ( Paullinia cupana Kunth) of the Sateré-Mawé Ethnic Group, in the Lower Amazon River Region," Sustainability, MDPI, vol. 14(22), pages 1-11, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15464-:d:979420
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15464/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15464/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chad J. Penn & James J. Camberato, 2019. "A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants," Agriculture, MDPI, vol. 9(6), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bangun Adi Wijaya & Wahyu Hidayat & Melya Riniarti & Hendra Prasetia & Ainin Niswati & Udin Hasanudin & Irwan Sukri Banuwa & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2022. "Meranti ( Shorea sp.) Biochar Application Method on the Growth of Sengon ( Falcataria moluccana ) as a Solution of Phosphorus Crisis," Energies, MDPI, vol. 15(6), pages 1-14, March.
    2. Ricardo Rocha & Cátia Venâncio & Paulo Cardoso & João Lourenço & Etelvina Figueira, 2024. "Evidence of Cooperative Interactions between Rhizobacteria and Wood-Decaying Fungi and Their Effects on Maize Germination and Growth," Agriculture, MDPI, vol. 14(7), pages 1-18, July.
    3. Shingo Matsumoto & Haruno Doi & Junko Kasuga, 2022. "Changes over the Years in Soil Chemical Properties Associated with the Cultivation of Ginseng ( Panax ginseng Meyer) on Andosol Soil," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
    4. Doze Batista de Oliveira & Julian Junio de Jesus Lacerda & Adenilson Pereira Cavalcante & Karmem Guimarães Bezerra & Allana Pereira Moura da Silva & Ana Caroline Guimarães Miranda & Tiago Pieta Rambo , 2024. "Lime and Gypsum Rates Effects in New Soybean Areas in the Cerrado of Matopiba, Brazil," Agriculture, MDPI, vol. 14(7), pages 1-20, June.
    5. Noman Ahmad & Fazila Younas & Hamaad Raza Ahmad & Muhammad Sarfraz & Muhammad Ashar Ayub & Muhammad Aamer Maqsood & Fahd Rasul & Muhammad Fahad Sardar & Tariq Mehmood & Jamaan S. Ajarem & Saleh n. Mao, 2023. "Soybean ( Glycine max ) Cropland Suitability Analysis in Subtropical Desert Climate through GIS-Based Multicriteria Analysis and Sentinel-2 Multispectral Imaging," Land, MDPI, vol. 12(11), pages 1-28, November.
    6. Violeta Voišnienė & Olga Kizinievič & Ramunė Albrektienė-Plačakė & Dovilė Vasiliauskienė & Jaunius Urbonavičius & Rasa Vilkauskaitė, 2024. "The Effect of Organic Lake Sediments (Sapropel) on the Properties and Biological Resistance of Unfired Clay Bricks," Sustainability, MDPI, vol. 16(6), pages 1-15, March.
    7. Mohammad Rafiqul Islam & Mohammad Moyeed Hasan Talukder & Mohammad Anamul Hoque & Shihab Uddin & Tahsina Sharmin Hoque & Rafea Sultana Rea & Mohammed Alorabi & Ahmed Gaber & Susilawati Kasim, 2021. "Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil," Agriculture, MDPI, vol. 11(11), pages 1-16, October.
    8. Inga-Mareike Bach & Lisa Essich & Andrea Bauerle & Torsten Müller, 2022. "Efficiency of Phosphorus Fertilizers Derived from Recycled Biogas Digestate as Applied to Maize and Ryegrass in Soils with Different pH," Agriculture, MDPI, vol. 12(3), pages 1-17, February.
    9. Muhammad Suleman & Muhammad Ashraf & Qurat-Ul-Ain Raza & Muhammad Amjad Bashir & Shafeeq Ur Rahman & Muhammad Aon & Saba Ali & Sher Muhammad Shahzad & Muhammad Usman Khalid & Hafiz Muhammad Ali Raza &, 2022. "Determining the Cadmium Accumulation in Maize ( Zea mays L.) and Soil Influenced by Phosphoric Fertilizers in Two Different Textured Soils," Land, MDPI, vol. 11(8), pages 1-15, August.
    10. Manuel Matisic & Ivan Dugan & Igor Bogunovic, 2024. "Challenges in Sustainable Agriculture—The Role of Organic Amendments," Agriculture, MDPI, vol. 14(4), pages 1-25, April.
    11. Wies, Germán & Navarrete-Segueda, Armando & Ceccon, Eliane & Larsen, John & Martinez-Ramos, Miguel, 2022. "What drives management decisions and grain yield variability in Mesoamerican maize cropping systems? Evidence from small-scale farmers in southern Mexico," Agricultural Systems, Elsevier, vol. 198(C).
    12. Marina Moura Morales & Nicholas Brian Comerford & Maurel Behling & Daniel Carneiro de Abreu & Iraê Amaral Guerrini, 2021. "Biochar Chemistry in a Weathered Tropical Soil: Kinetics of Phosphorus Sorption," Agriculture, MDPI, vol. 11(4), pages 1-12, March.
    13. Andrea Danaé Gómez-Suárez & Cécile Nobile & Michel-Pierre Faucon & Olivier Pourret & David Houben, 2020. "Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere," Sustainability, MDPI, vol. 12(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15464-:d:979420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.