IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i7p1170-d1437318.html
   My bibliography  Save this article

Evidence of Cooperative Interactions between Rhizobacteria and Wood-Decaying Fungi and Their Effects on Maize Germination and Growth

Author

Listed:
  • Ricardo Rocha

    (Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
    These authors contributed equally to this work.)

  • Cátia Venâncio

    (Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
    These authors contributed equally to this work.)

  • Paulo Cardoso

    (Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal)

  • João Lourenço

    (Tecniferti®, Rua de Ourém, Lote 14, 2º I, Almoinha Grande, 2416-903 Leiria, Portugal)

  • Etelvina Figueira

    (Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

Advances in soil microbial communities are driving agricultural practices towards ecological sustainability and productivity, with engineering microbial communities significantly contributing to sustainable agriculture. This study explored the combined effects of two white-rot fungi ( Trametes sp. and Pleurotus sp.) and six rhizobacterial strains belonging to four genera ( Acinetobacter sp., Enterobacter sp., Flavobacterium sp., and Pseudomonas sp.) on maize growth and soil enzymatic activity over a 14-day period. At the plant level, germination, fresh and dry mass of the aerial and root parts, length, and stage of development of the stem, as well as the chlorophyll content, were evaluated. Furthermore, soil dehydrogenase, acid and alkaline phosphatases, pH, and electrical conductivity were evaluated. Rot fungi induced distinct effects on maize germination, with Pleurotus sp. strongly suppressing maize germination by 40% relative to that of the control. The isolated bacterial strains, except Enterobacter sp. O8, and 8 of the 12 fungus + bacterial strain combinations induced germination rates higher than those of the control (≥40%). Combinations of Flavobacterium sp. I57 and Pseudomonas sp. O81 with the rot fungus Pleurotus sp. significantly improved plant shoot length (from 28.0 to 37.0 cm) and developmental stage (fourth leaf length increase from 10.0 to 16.8 cm), respectively, compared with the same bacteria alone or in combination with the rot fungus Trametes sp. In the soil, the presence of both fungi appeared to stabilize phosphatase activity compared to their activity when only bacteria were present, while also promoting overall dehydrogenase enzymatic activity in the soil. Integrating all parameters, Trametes sp. rot fungus + Enterobacter sp. O8 may be a potential combination to be explored in the context of agricultural production, and future studies should focus on the consistency of this combination’s performance over time and its effectiveness in the field.

Suggested Citation

  • Ricardo Rocha & Cátia Venâncio & Paulo Cardoso & João Lourenço & Etelvina Figueira, 2024. "Evidence of Cooperative Interactions between Rhizobacteria and Wood-Decaying Fungi and Their Effects on Maize Germination and Growth," Agriculture, MDPI, vol. 14(7), pages 1-18, July.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:7:p:1170-:d:1437318
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/7/1170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/7/1170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chad J. Penn & James J. Camberato, 2019. "A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants," Agriculture, MDPI, vol. 9(6), pages 1-18, June.
    2. Mondani, Farzad & Khani, Kianoosh & Honarmand, Saeid Jalali & Saeidi, Mohsen, 2019. "Evaluating effects of plant growth-promoting rhizobacteria on the radiation use efficiency and yield of soybean (Glycine max) under water deficit stress condition," Agricultural Water Management, Elsevier, vol. 213(C), pages 707-713.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bangun Adi Wijaya & Wahyu Hidayat & Melya Riniarti & Hendra Prasetia & Ainin Niswati & Udin Hasanudin & Irwan Sukri Banuwa & Sangdo Kim & Sihyun Lee & Jiho Yoo, 2022. "Meranti ( Shorea sp.) Biochar Application Method on the Growth of Sengon ( Falcataria moluccana ) as a Solution of Phosphorus Crisis," Energies, MDPI, vol. 15(6), pages 1-14, March.
    2. Shingo Matsumoto & Haruno Doi & Junko Kasuga, 2022. "Changes over the Years in Soil Chemical Properties Associated with the Cultivation of Ginseng ( Panax ginseng Meyer) on Andosol Soil," Agriculture, MDPI, vol. 12(8), pages 1-13, August.
    3. Doze Batista de Oliveira & Julian Junio de Jesus Lacerda & Adenilson Pereira Cavalcante & Karmem Guimarães Bezerra & Allana Pereira Moura da Silva & Ana Caroline Guimarães Miranda & Tiago Pieta Rambo , 2024. "Lime and Gypsum Rates Effects in New Soybean Areas in the Cerrado of Matopiba, Brazil," Agriculture, MDPI, vol. 14(7), pages 1-20, June.
    4. Noman Ahmad & Fazila Younas & Hamaad Raza Ahmad & Muhammad Sarfraz & Muhammad Ashar Ayub & Muhammad Aamer Maqsood & Fahd Rasul & Muhammad Fahad Sardar & Tariq Mehmood & Jamaan S. Ajarem & Saleh n. Mao, 2023. "Soybean ( Glycine max ) Cropland Suitability Analysis in Subtropical Desert Climate through GIS-Based Multicriteria Analysis and Sentinel-2 Multispectral Imaging," Land, MDPI, vol. 12(11), pages 1-28, November.
    5. Violeta Voišnienė & Olga Kizinievič & Ramunė Albrektienė-Plačakė & Dovilė Vasiliauskienė & Jaunius Urbonavičius & Rasa Vilkauskaitė, 2024. "The Effect of Organic Lake Sediments (Sapropel) on the Properties and Biological Resistance of Unfired Clay Bricks," Sustainability, MDPI, vol. 16(6), pages 1-15, March.
    6. Clara Peres Vignoli & Johannes Leeuwen & Robert Pritchard Miller & César Augusto Ticona-Benavente & Bárbara Vieira da Silva & Bruno Striffler & José Guedes Fernandes Neto & Sonia Sena Alfaia, 2022. "Soil Management in Indigenous Agroforestry Systems of Guarana ( Paullinia cupana Kunth) of the Sateré-Mawé Ethnic Group, in the Lower Amazon River Region," Sustainability, MDPI, vol. 14(22), pages 1-11, November.
    7. Mohammad Rafiqul Islam & Mohammad Moyeed Hasan Talukder & Mohammad Anamul Hoque & Shihab Uddin & Tahsina Sharmin Hoque & Rafea Sultana Rea & Mohammed Alorabi & Ahmed Gaber & Susilawati Kasim, 2021. "Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil," Agriculture, MDPI, vol. 11(11), pages 1-16, October.
    8. Inga-Mareike Bach & Lisa Essich & Andrea Bauerle & Torsten Müller, 2022. "Efficiency of Phosphorus Fertilizers Derived from Recycled Biogas Digestate as Applied to Maize and Ryegrass in Soils with Different pH," Agriculture, MDPI, vol. 12(3), pages 1-17, February.
    9. Muhammad Suleman & Muhammad Ashraf & Qurat-Ul-Ain Raza & Muhammad Amjad Bashir & Shafeeq Ur Rahman & Muhammad Aon & Saba Ali & Sher Muhammad Shahzad & Muhammad Usman Khalid & Hafiz Muhammad Ali Raza &, 2022. "Determining the Cadmium Accumulation in Maize ( Zea mays L.) and Soil Influenced by Phosphoric Fertilizers in Two Different Textured Soils," Land, MDPI, vol. 11(8), pages 1-15, August.
    10. Manuel Matisic & Ivan Dugan & Igor Bogunovic, 2024. "Challenges in Sustainable Agriculture—The Role of Organic Amendments," Agriculture, MDPI, vol. 14(4), pages 1-25, April.
    11. Lucy Reed & Bernard R. Glick, 2023. "The Recent Use of Plant-Growth-Promoting Bacteria to Promote the Growth of Agricultural Food Crops," Agriculture, MDPI, vol. 13(5), pages 1-24, May.
    12. Wies, Germán & Navarrete-Segueda, Armando & Ceccon, Eliane & Larsen, John & Martinez-Ramos, Miguel, 2022. "What drives management decisions and grain yield variability in Mesoamerican maize cropping systems? Evidence from small-scale farmers in southern Mexico," Agricultural Systems, Elsevier, vol. 198(C).
    13. Marina Moura Morales & Nicholas Brian Comerford & Maurel Behling & Daniel Carneiro de Abreu & Iraê Amaral Guerrini, 2021. "Biochar Chemistry in a Weathered Tropical Soil: Kinetics of Phosphorus Sorption," Agriculture, MDPI, vol. 11(4), pages 1-12, March.
    14. Andrea Danaé Gómez-Suárez & Cécile Nobile & Michel-Pierre Faucon & Olivier Pourret & David Houben, 2020. "Fertilizer Potential of Struvite as Affected by Nitrogen Form in the Rhizosphere," Sustainability, MDPI, vol. 12(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:7:p:1170-:d:1437318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.