IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i22p15256-d975520.html
   My bibliography  Save this article

Productive and Sustainable H 2 Production from Waste Aluminum Using Copper Oxides-Based Graphene Nanocatalysts: A Techno-Economic Analysis

Author

Listed:
  • Mokhtar Ali Amrani

    (Department of Renewable Energy Engineering, Faculty of Engineering and Technology, Philadelphia University, Amman 19392, Jordan
    Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen)

  • Yara Haddad

    (Department of Alternative Energy Technology, Faculty of Engineering and Technology, Philadelphia University, Amman 19392, Jordan)

  • Firas Obeidat

    (Department of Renewable Energy Engineering, Faculty of Engineering and Technology, Philadelphia University, Amman 19392, Jordan)

  • Atef M. Ghaleb

    (Department of Industrial Engineering, College of Engineering, Alfaisal University, Riyadh 11533, Saudi Arabia)

  • Sobhi Mejjaouli

    (Department of Industrial Engineering, College of Engineering, Alfaisal University, Riyadh 11533, Saudi Arabia)

  • Ibrahim Rahoma

    (Department of Renewable Energy Engineering, Faculty of Engineering and Technology, Philadelphia University, Amman 19392, Jordan)

  • Mansour S. A. Galil

    (Faculty of Medical Sciences, Aljanad University for Science and Technology, Taiz 6803, Yemen
    Department of Chemistry, Faculty of Applied Sciences, Taiz University, Taiz 6803, Yemen)

  • Mutahar Shameeri

    (Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen)

  • Ahmed A. Alsofi

    (Faculty of Medical Sciences, Aljanad University for Science and Technology, Taiz 6803, Yemen)

  • Amin Saif

    (Faculty of Engineering and Information Technology, Taiz University, Taiz 6803, Yemen)

Abstract

Hydrogen has universally been considered a reliable source of future clean energy. Its energy conversion, processing, transportation, and storage are techno-economically promising for sustainable energy. This study attempts to maximize the production of H 2 energy using nanocatalysts from waste aluminum chips, an abundant metal that is considered a potential storage tank of H 2 energy with high energy density. The present study indicates that the use of waste aluminum chips in the production of H 2 gas will be free of cost since the reaction by-product, Al 2 O 3 , is denser and can be sold at a higher price than the raw materials, which makes the production cost more efficient and feasible. The current framework investigates seven different copper oxide-based graphene nanocomposites that are synthesized by utilizing green methods and that are well-characterized in terms of their structural, morphological, and surface properties. Reduced graphene oxide (rGO) and multi-layer graphene (MLG) are used as graphene substrates for CuO and Cu 2 O NPs, respectively. These graphene materials exhibited extraordinary catalytic activity, while their copper oxide composites exhibited a complete reaction with feasible techno-economic production. The results revealed that the H 2 production yield and rates increased twofold with the use of these nanocatalysts. The present study recommends the optimum reactor design considerations and reaction parameters that minimize water vaporization in the reaction and suggests practical solutions to quantify and separate it. Furthermore, the present study affords an economic feasibility approach to producing H 2 gas that is competitive and efficient. The cost of producing 1 kg of H 2 gas from waste aluminum chips is USD 6.70, which is both economically feasible and technically applicable. The unit cost of H 2 gas can be steeply reduced by building large-scale plants offering mass production. Finally, the predicted approach is applicable in large, medium, and small cities that can collect industrial waste aluminum in bulk to generate large-scale energy units.

Suggested Citation

  • Mokhtar Ali Amrani & Yara Haddad & Firas Obeidat & Atef M. Ghaleb & Sobhi Mejjaouli & Ibrahim Rahoma & Mansour S. A. Galil & Mutahar Shameeri & Ahmed A. Alsofi & Amin Saif, 2022. "Productive and Sustainable H 2 Production from Waste Aluminum Using Copper Oxides-Based Graphene Nanocatalysts: A Techno-Economic Analysis," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15256-:d:975520
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/22/15256/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/22/15256/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olesya A. Buryakovskaya & Anna I. Kurbatova & Mikhail S. Vlaskin & George E. Valyano & Anatoly V. Grigorenko & Grayr N. Ambaryan & Aleksandr O. Dudoladov, 2022. "Waste to Hydrogen: Elaboration of Hydroreactive Materials from Magnesium-Aluminum Scrap," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    2. Yuriy Shapovalov & Rustam Tokpayev & Tamina Khavaza & Mikhail Nauryzbayev, 2021. "Generation of Hydrogen and Oxygen from Water by Solar Energy Conversion," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    3. Roberto Ercoli & Andrea Orlando & Daniele Borrini & Franco Tassi & Gabriele Bicocchi & Alberto Renzulli, 2021. "Hydrogen-Rich Gas Produced by the Chemical Neutralization of Reactive By-Products from the Screening Processes of the Secondary Aluminum Industry," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    4. Miguel Castro Oliveira & Muriel Iten & Henrique A. Matos, 2022. "Review of Thermochemical Technologies for Water and Energy Integration Systems: Energy Storage and Recovery," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    5. Xin, Shuaishuai & Shen, Jianguo & Liu, Guocheng & Chen, Qinghua & Xiao, Zhou & Zhang, Guodong & Xin, Yanjun, 2020. "High electricity generation and COD removal from cattle wastewater in microbial fuel cells with 3D air cathode employed non-precious Cu2O/reduced graphene oxide as cathode catalyst," Energy, Elsevier, vol. 196(C).
    6. Ruifeng Shi & Xiaoxi Chen & Jiajun Qin & Ping Wu & Limin Jia, 2022. "The State-of-the-Art Progress on the Forms and Modes of Hydrogen and Ammonia Energy Utilization in Road Transportation," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    7. Wang, H.Z. & Leung, D.Y.C. & Leung, M.K.H. & Ni, M., 2009. "A review on hydrogen production using aluminum and aluminum alloys," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 845-853, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    2. Mousavi, Seyed Ali & Mehrpooya, Mehdi, 2021. "Fabrication of copper centered metal organic framework and nitrogen, sulfur dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction," Energy, Elsevier, vol. 214(C).
    3. Chai, Y.J. & Dong, Y.M. & Meng, H.X. & Jia, Y.Y. & Shen, J. & Huang, Y.M. & Wang, N., 2014. "Hydrogen generation by aluminum corrosion in cobalt (II) chloride and nickel (II) chloride aqueous solution," Energy, Elsevier, vol. 68(C), pages 204-209.
    4. Wang, Huizhi & Leung, Dennis Y.C. & Leung, Michael K.H., 2012. "Energy analysis of hydrogen and electricity production from aluminum-based processes," Applied Energy, Elsevier, vol. 90(1), pages 100-105.
    5. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    6. Chen, Wenwen & Liu, Zhongliang & Li, Yanxia & Liao, Qiang & Zhu, Xun, 2021. "High electricity generation achieved by depositing rGO@MnO2 composite catalysts on three-dimensional stainless steel fiber felt for preparing the energy-efficient air cathode in microbial fuel cells," Energy, Elsevier, vol. 222(C).
    7. Liuzhang Ouyang & Miaolian Ma & Minghong Huang & Ruoming Duan & Hui Wang & Lixian Sun & Min Zhu, 2015. "Enhanced Hydrogen Generation Properties of MgH 2 -Based Hydrides by Breaking the Magnesium Hydroxide Passivation Layer," Energies, MDPI, vol. 8(5), pages 1-16, May.
    8. Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Alawadhi, Hussain & Elsaid, Khaled & Wilberforce, Tabbi & Olabi, A.G., 2021. "Graphitic carbon nitride/carbon brush composite as a novel anode for yeast-based microbial fuel cells," Energy, Elsevier, vol. 221(C).
    9. Wang, Hongqi & Wang, Zhi & Shi, Zhihao & Gong, Xuzhong & Cao, Jianwei & Wang, Mingyong, 2017. "Facile hydrogen production from Al-water reaction promoted by choline hydroxide," Energy, Elsevier, vol. 131(C), pages 98-105.
    10. de Ramón-Fernández, A. & Salar-García, M.J. & Ruiz Fernández, D. & Greenman, J. & Ieropoulos, I.A., 2020. "Evaluation of artificial neural network algorithms for predicting the effect of the urine flow rate on the power performance of microbial fuel cells," Energy, Elsevier, vol. 213(C).
    11. Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
    12. Olesya A. Buryakovskaya & Anna I. Kurbatova & Mikhail S. Vlaskin & George E. Valyano & Anatoly V. Grigorenko & Grayr N. Ambaryan & Aleksandr O. Dudoladov, 2022. "Waste to Hydrogen: Elaboration of Hydroreactive Materials from Magnesium-Aluminum Scrap," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    13. Jamey Davies & Stephanus P. Du Preez & Dmitri G. Bessarabov, 2022. "The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation," Energies, MDPI, vol. 15(7), pages 1-22, March.
    14. Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
    15. Salvi, B.L. & Subramanian, K.A., 2015. "Sustainable development of road transportation sector using hydrogen energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1132-1155.
    16. Gai, Wei-Zhuo & Deng, Zhen-Yan, 2024. "Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications," Renewable Energy, Elsevier, vol. 226(C).
    17. Haller, Michel Y. & Amstad, Dominik & Dudita, Mihaela & Englert, Alexander & Häberle, Andreas, 2021. "Combined heat and power production based on renewable aluminium-water reaction," Renewable Energy, Elsevier, vol. 174(C), pages 879-893.
    18. Yang, Weijuan & Zhang, Tianyou & Zhou, Junhu & Shi, Wei & Liu, Jianzhong & Cen, Kefa, 2015. "Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction," Energy, Elsevier, vol. 88(C), pages 537-543.
    19. Jiménez-Calvo, Pablo & Caps, Valérie & Keller, Valérie, 2021. "Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Silveira, Gustavo & de Aquino Neto, Sidney & Schneedorf, José Maurício, 2020. "Development, characterization and application of a low-cost single chamber microbial fuel cell based on hydraulic couplers," Energy, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:22:p:15256-:d:975520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.