Author
Listed:
- Pedro Gabriel Villani
(Safety Analysis Group (GAS), Department of Computer Engineering and Digital Systems (PCS), Escola Politécnica (Poli), Universidade de São Paulo (USP), São Paulo 05508-010, SP, Brazil)
- Paulo Sergio Cugnasca
(Safety Analysis Group (GAS), Department of Computer Engineering and Digital Systems (PCS), Escola Politécnica (Poli), Universidade de São Paulo (USP), São Paulo 05508-010, SP, Brazil)
Abstract
Background : The rise in natural and man-made disasters has increased the need for effective search-and-rescue tools, particularly in resource-limited areas. Unmanned Aerial Vehicles (UAVs) are increasingly used for this purpose due to their flexibility and lower operational costs. However, finding the most efficient paths for these UAVs remains a challenge, as it is essential to maximize victim location and minimize mission time. Methods : This study presents an autonomous UAV-based approach for identifying victims, prioritizing high-risk areas and those needing urgent medical attention. Unlike other methods focused solely on minimizing mission time, this approach emphasizes high-risk zones and potential secondary disaster areas. Using a partially observable Markov decision process, it simulates victim detection through an image classification algorithm, enabling efficient and independent operation. Results : Experiments with real data indicate that this approach reduces risk by 66% during the mission’s first half while autonomously identifying victims without human intervention. Conclusions : This study demonstrates the capability of autonomous UAV systems to improve search-and-rescue efforts in disaster-prone, resource-constrained regions by effectively prioritizing high-risk areas, thereby reducing mission risk and improving response efficiency.
Suggested Citation
Pedro Gabriel Villani & Paulo Sergio Cugnasca, 2024.
"A POMDP Approach to Map Victims in Disaster Scenarios,"
Logistics, MDPI, vol. 8(4), pages 1-25, November.
Handle:
RePEc:gam:jlogis:v:8:y:2024:i:4:p:113-:d:1516014
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:8:y:2024:i:4:p:113-:d:1516014. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.