IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v126y2024ics0305048324000343.html
   My bibliography  Save this article

A continuous approximation approach to integrated truck and drone delivery systems

Author

Listed:
  • Zhang, Juan
  • Campbell, James F.
  • Sweeney, Donald C.

Abstract

Home package delivery by drones as an alternative or complement to traditional delivery by trucks is attracting considerable attention from the commercial sector as well as academia. While drone delivery may offer considerable benefits, the fundamental issues of how best to deploy drones for small package delivery are still not well understood. Unlike most studies in the literature that consider either truck-drone tandems or drone standalone delivery operations, our research provides a strategic analysis for the optimal design of an integrated drone delivery system in which customers in a service region can be served by a combination of truck-drone (TD) delivery, drone-only (DO) delivery, and truck-only (TO) delivery. We formulate and optimize continuous approximation models to identify the optimal delivery service combination that minimizes the total delivery costs including truck and drone operating and stop costs. We evaluate the impact of a wide range of operating characteristics and delivery environments on the optimal delivery system and the benefits of using drones. Our results suggest that an optimal delivery system design often uses a mix of DO and TD, but TD is the dominant delivery service in most scenarios. The magnitude of the cost savings afforded by the use of drones, relative to truck-only delivery, can be large but strongly depends on the values of key parameters.

Suggested Citation

  • Zhang, Juan & Campbell, James F. & Sweeney, Donald C., 2024. "A continuous approximation approach to integrated truck and drone delivery systems," Omega, Elsevier, vol. 126(C).
  • Handle: RePEc:eee:jomega:v:126:y:2024:i:c:s0305048324000343
    DOI: 10.1016/j.omega.2024.103067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048324000343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2024.103067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    2. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    3. Zhou, Hang & Qin, Hu & Cheng, Chun & Rousseau, Louis-Martin, 2023. "An exact algorithm for the two-echelon vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 124-150.
    4. Stefan Poikonen & Bruce Golden & Edward A. Wasil, 2019. "A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 335-346, April.
    5. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    6. Chuck Holland & Jack Levis & Ranganath Nuggehalli & Bob Santilli & Jeff Winters, 2017. "UPS Optimizes Delivery Routes," Interfaces, INFORMS, vol. 47(1), pages 8-23, February.
    7. Wang, Xin & Jiang, Ruiwei & Qi, Mingyao, 2023. "A robust optimization problem for drone-based equitable pandemic vaccine distribution with uncertain supply," Omega, Elsevier, vol. 119(C).
    8. Niels Agatz & Paul Bouman & Marie Schmidt, 2018. "Optimization Approaches for the Traveling Salesman Problem with Drone," Transportation Science, INFORMS, vol. 52(4), pages 965-981, August.
    9. Sandoval, M. Gabriela & Álvarez-Miranda, Eduardo & Pereira, Jordi & Ríos-Mercado, Roger Z. & Díaz, Juan A., 2022. "A novel districting design approach for on-time last-mile delivery: An application on an express postal company," Omega, Elsevier, vol. 113(C).
    10. Pei, Zhi & Dai, Xu & Yuan, Yilun & Du, Rui & Liu, Changchun, 2021. "Managing price and fleet size for courier service with shared drones," Omega, Elsevier, vol. 104(C).
    11. Tamke, Felix & Buscher, Udo, 2021. "A branch-and-cut algorithm for the vehicle routing problem with drones," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 174-203.
    12. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    13. John Gunnar Carlsson & Siyuan Song, 2018. "Coordinated Logistics with a Truck and a Drone," Management Science, INFORMS, vol. 64(9), pages 4052-4069, September.
    14. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Rejoinder on: Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 443-444, October.
    15. Daganzo, Carlos F., 1984. "The length of tours in zones of different shapes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 135-145, April.
    16. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    17. Dell’Amico, Mauro & Montemanni, Roberto & Novellani, Stefano, 2021. "Algorithms based on branch and bound for the flying sidekick traveling salesman problem," Omega, Elsevier, vol. 104(C).
    18. Langevin, André & Mbaraga, Pontien & Campbell, James F., 1996. "Continuous approximation models in freight distribution: An overview," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 163-188, June.
    19. Carlos F. Daganzo, 1984. "The Distance Traveled to Visit N Points with a Maximum of C Stops per Vehicle: An Analytic Model and an Application," Transportation Science, INFORMS, vol. 18(4), pages 331-350, November.
    20. Vig, Vikrant & Palekar, Udatta S., 2008. "On estimating the distribution of optimal traveling salesman tour lengths using heuristics," European Journal of Operational Research, Elsevier, vol. 186(1), pages 111-119, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Yong & Yang, Junhao & Han, Qian & Song, Hao & Guo, Haixiang, 2024. "Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration," Omega, Elsevier, vol. 127(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Chao & Ouyang, Yanfeng, 2018. "Continuous approximation for demand balancing in solving large-scale one-commodity pickup and delivery problems," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 90-109.
    2. Zhu, Waiming & Hu, Xiaoxuan & Pei, Jun & Pardalos, Panos M., 2024. "Minimizing the total travel distance for the locker-based drone delivery: A branch-and-cut-based method," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    3. Ren, Xuan & Froger, Aurélien & Jabali, Ola & Liang, Gongqian, 2024. "A competitive heuristic algorithm for vehicle routing problems with drones," European Journal of Operational Research, Elsevier, vol. 318(2), pages 469-485.
    4. Madani, Batool & Ndiaye, Malick & Salhi, Said, 2024. "Hybrid truck-drone delivery system with multi-visits and multi-launch and retrieval locations: Mathematical model and adaptive variable neighborhood search with neighborhood categorization," European Journal of Operational Research, Elsevier, vol. 316(1), pages 100-125.
    5. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    6. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    7. Huang, Michael & Smilowitz, Karen R. & Balcik, Burcu, 2013. "A continuous approximation approach for assessment routing in disaster relief," Transportation Research Part B: Methodological, Elsevier, vol. 50(C), pages 20-41.
    8. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    9. Schaumann, Sarah K. & Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2023. "Route efficiency implications of time windows and vehicle capacities in first- and last-mile logistics," European Journal of Operational Research, Elsevier, vol. 311(1), pages 88-111.
    10. Banerjee, Dipayan & Erera, Alan L. & Stroh, Alexander M. & Toriello, Alejandro, 2023. "Who has access to e-commerce and when? Time-varying service regions in same-day delivery," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 148-168.
    11. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    12. Baller, Annelieke C. & Dabia, Said & Dullaert, Wout E.H. & Vigo, Daniele, 2019. "The Dynamic-Demand Joint Replenishment Problem with Approximated Transportation Costs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1013-1033.
    13. Di Huang & Weiping Tong & Lumeng Wang & Xun Yang, 2019. "An Analytical Model for the Many-to-One Demand Responsive Transit Systems," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    14. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2024. "Electric van-based robot deliveries with en-route charging," European Journal of Operational Research, Elsevier, vol. 317(3), pages 806-826.
    15. Yun, Lifen & Fan, Hongqiang & Li, Xiaopeng, 2019. "Reliable facility location design with round-trip transportation under imperfect information part II: A continuous model," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 44-59.
    16. Tiniç, Gizem Ozbaygin & Karasan, Oya E. & Kara, Bahar Y. & Campbell, James F. & Ozel, Aysu, 2023. "Exact solution approaches for the minimum total cost traveling salesman problem with multiple drones," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 81-123.
    17. Shi, Yong & Yang, Junhao & Han, Qian & Song, Hao & Guo, Haixiang, 2024. "Optimal decision-making of post-disaster emergency material scheduling based on helicopter–truck–drone collaboration," Omega, Elsevier, vol. 127(C).
    18. Jaller, Miguel & Pahwa, Anmol, 2020. "Analytical Modeling Framework to Assess the Economic and Environmental Impacts of Residential Deliveries, and Evaluate Sustainable Last-Mile Strategies," Institute of Transportation Studies, Working Paper Series qt4143j4pr, Institute of Transportation Studies, UC Davis.
    19. Ouyang, Yanfeng & Wang, Zhaodong & Yang, Hai, 2015. "Facility location design under continuous traffic equilibrium," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 18-33.
    20. Alexander M. Stroh & Alan L. Erera & Alejandro Toriello, 2022. "Tactical Design of Same-Day Delivery Systems," Management Science, INFORMS, vol. 68(5), pages 3444-3463, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:126:y:2024:i:c:s0305048324000343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.