IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005933.html
   My bibliography  Save this article

Time-evolving traffic resilience performance forecasting during hazardous weather toward proactive intervention

Author

Listed:
  • Yao, Kaisen
  • Chen, Larry
  • Chen, Suren

Abstract

Transportation systems experience significant disruptions and loss during hazardous weather events, exhibiting great needs of timely intervention to effectively improve the resilience of the affected traffic systems. An informed and science-based proactive intervention strategy depends on accurate forecasting of the resilience performance of traffic systems with essential lead time during hazards. A new resilience performance forecasting methodology at both global and local scales is proposed for traffic networks under natural hazards by addressing unique challenges such as scarcity and time-evolving nature of hazard-specific data. The proposed methodology consists of two modules: the local traffic resilience performance short-term forecasting module based on the modified diffusion convolutional recurrent neural network (DCRNN) and transfer learning techniques, and the global traffic resilience performance forecasting module integrating percolation-based robustness assessment and SIR-based congestion propagation modeling. A case study of an urban traffic network during a major snowstorm hazard is conducted as a demonstration, followed by the feasibility investigation to guide proactive intervention during hazards. It is found the proposed methodology can forecast the time-evolving traffic resilience performance with good accuracy at both global and local scales. With sufficient lead time for the forecast, it bears promising potential to assist the stakeholders to make informed and timely decision about possible proactive intervention by providing key information to help identify the optimal moments and individual strategic links for possible intervention.

Suggested Citation

  • Yao, Kaisen & Chen, Larry & Chen, Suren, 2025. "Time-evolving traffic resilience performance forecasting during hazardous weather toward proactive intervention," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005933
    DOI: 10.1016/j.ress.2024.110521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Erratum: Universal resilience patterns in complex networks," Nature, Nature, vol. 536(7615), pages 238-238, August.
    2. Jianxi Gao & Baruch Barzel & Albert-László Barabási, 2016. "Universal resilience patterns in complex networks," Nature, Nature, vol. 530(7590), pages 307-312, February.
    3. Dominik Paprotny & Antonia Sebastian & Oswaldo Morales-Nápoles & Sebastiaan N. Jonkman, 2018. "Trends in flood losses in Europe over the past 150 years," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    4. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    5. Meead Saberi & Homayoun Hamedmoghadam & Mudabber Ashfaq & Seyed Amir Hosseini & Ziyuan Gu & Sajjad Shafiei & Divya J. Nair & Vinayak Dixit & Lauren Gardner & S. Travis Waller & Marta C. González, 2020. "A simple contagion process describes spreading of traffic jams in urban networks," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    6. Sheikh, Muhammad Sameer & Wang, Ji & Regan, Amelia, 2021. "A game theory-based controller approach for identifying incidents caused by aberrant lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. M. E. J. Newman & Robin Engelhardt, 1998. "Effects of Neutral Selection on the Evolution of Molecular Species," Working Papers 98-01-001, Santa Fe Institute.
    8. E. E. Koks & J. Rozenberg & C. Zorn & M. Tariverdi & M. Vousdoukas & S. A. Fraser & J. W. Hall & S. Hallegatte, 2019. "A global multi-hazard risk analysis of road and railway infrastructure assets," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    9. Reggiani, Aura, 2013. "Network resilience for transport security: Some methodological considerations," Transport Policy, Elsevier, vol. 28(C), pages 63-68.
    10. Wu, Yangyang & Hou, Guangyang & Chen, Suren, 2021. "Post-earthquake resilience assessment and long-term restoration prioritization of transportation network," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    11. Shuming Sun & Juan Chen & Jian Sun, 2019. "Traffic congestion prediction based on GPS trajectory data," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    2. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    4. He,Yiyi & Maruyama Rentschler,Jun Erik & Avner,Paolo & Gao,Jianxi & Yue,Xiangyu & Radke,John, 2022. "Mobility and Resilience : A Global Assessment of Flood Impacts on Road Transportation Networks," Policy Research Working Paper Series 10049, The World Bank.
    5. Yingqiu Zhu & Ruiyi Wang & Mingfei Feng & Lei Qin & Ben-Chang Shia & Ming-Chih Chen, 2024. "Supply Chain Analysis Based on Community Detection of Multi-Layer Weighted Networks," Mathematics, MDPI, vol. 12(22), pages 1-21, November.
    6. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Dongli, Duan & Chengxing, Wu & Yuchen, Zhai & Changchun, Lv & Ning, Wang, 2022. "Coexistence mechanism of alien species and local ecosystem based on network dimensionality reduction method," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    8. Richard L. Gruner & Damien Power, 2023. "Conceptual wanderlust: How to develop creative supply chain theory with analogies," Journal of Supply Chain Management, Institute for Supply Management, vol. 59(4), pages 3-21, October.
    9. Tu, Chengyi & Fan, Ying & Shi, Tianyu, 2024. "Dimensionality reduction of networked systems with separable coupling-dynamics: Theory and applications," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Duan, Wenqi & Madasi, Joseph David & Khurshid, Adnan & Ma, Dan, 2022. "Industrial structure conditions economic resilience," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    11. Sebestyén, Tamás & Szabó, Norbert & Braun, Emese & Bedő, Zsolt, 2024. "Lokális reziliencia számítása térbeli általános egyensúlyi modell felhasználásával [Measuring local resilience with a spatial computable general equilibrium model]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(11), pages 1222-1253.
    12. Hou, Gege & Bai, Lei & Si, Shubin, 2023. "Ecosystem resilience and stability analysis against alien species invasion patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    13. Liu, Siyuan & Zhang, Chunyan & Li, Kun & Zhang, Jianlei, 2022. "Exploring the inducement for social dilemma and cooperation promotion mechanisms in structured populations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    14. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    15. Lu, Qing-Long & Sun, Wenzhe & Dai, Jiannan & Schmöcker, Jan-Dirk & Antoniou, Constantinos, 2024. "Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    16. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    17. Convertino, Matteo & Annis, Antonio & Nardi, Fernando, 2019. "Information-theoretic Portfolio Decision Model for Optimal Flood Management," Earth Arxiv k5aut, Center for Open Science.
    18. Chunheng Jiang & Zhenhan Huang & Tejaswini Pedapati & Pin-Yu Chen & Yizhou Sun & Jianxi Gao, 2024. "Network properties determine neural network performance," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Alejandro Martínez-Calvo & Matthew D. Biviano & Anneline H. Christensen & Eleni Katifori & Kaare H. Jensen & Miguel Ruiz-García, 2024. "The fluidic memristor as a collective phenomenon in elastohydrodynamic networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    20. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.