IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13295-d943803.html
   My bibliography  Save this article

Impact Assessment of Diverse EV Charging Infrastructures on Overall Service Reliability

Author

Listed:
  • Abdulaziz Almutairi

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al Majma’ah 11952, Saudi Arabia)

Abstract

A higher penetration of EVs may pose several challenges to the power systems, including reliability issues. To analyze the impact of EVs on the reliability of power systems, a detailed EV charging infrastructure is considered in this study. All possible charging locations (home, workplace, public locations, and commercial fast chargers) and different charging levels (level 1, level 2, and DC fast charging) are considered, and seven charging infrastructures are determined first. Then, the reliability impact of each charging infrastructure is determined using the two widely used reliability indices, i.e., the loss of load expectation ( LOLE ) and the loss of energy expectation ( LOEE ). The impact of mixed charging infrastructure portfolios is also analyzed by considering two different cases, which included the equal share of all charging infrastructure and charging infrastructure share based on consumer preferences. The performance is analyzed on a well-known reliability test system (Roy Billinton Test System) and different penetration levels of EVs are considered in each case. Test results have shown that fast-charging stations have the worst reliability impact. In addition, it was also observed that mixed charging portfolios have lower reliability impacts despite having a fair share of fast-charging stations.

Suggested Citation

  • Abdulaziz Almutairi, 2022. "Impact Assessment of Diverse EV Charging Infrastructures on Overall Service Reliability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13295-:d:943803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13295/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13295/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunoh Kim & Jin Hur, 2020. "A Probabilistic Modeling Based on Monte Carlo Simulation of Wind Powered EV Charging Stations for Steady-States Security Analysis," Energies, MDPI, vol. 13(20), pages 1-13, October.
    2. Di Zhang & Yaxiong Kang & Li Ji & Ruifeng Shi & Limin Jia, 2022. "Coevolution and Evaluation of Electric Vehicles and Power Grids Based on Complex Networks," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    3. Hak-Ju Lee & Byeong-Chan Oh & Seok-Woong Kim & Sung-Yul Kim, 2020. "V2G Strategy for Improvement of Distribution Network Reliability Considering Time Space Network of EVs," Energies, MDPI, vol. 13(17), pages 1-19, August.
    4. Gandoman, Foad H. & Ahmadi, Abdollah & Bossche, Peter Van den & Van Mierlo, Joeri & Omar, Noshin & Nezhad, Ali Esmaeel & Mavalizadeh, Hani & Mayet, Clément, 2019. "Status and future perspectives of reliability assessment for electric vehicles," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 1-16.
    5. Davidov, Sreten & Pantoš, Miloš, 2019. "Optimization model for charging infrastructure planning with electric power system reliability check," Energy, Elsevier, vol. 166(C), pages 886-894.
    6. Mohamed Mokhtar & Mostafa F. Shaaban & Mahmoud H. Ismail & Hatem F. Sindi & Muhyaddin Rawa, 2022. "Reliability Assessment under High Penetration of EVs including V2G Strategy," Energies, MDPI, vol. 15(4), pages 1-17, February.
    7. Zhengwei Xia & Dongming Wu & Langlang Zhang, 2022. "Economic, Functional, and Social Factors Influencing Electric Vehicles’ Adoption: An Empirical Study Based on the Diffusion of Innovation Theory," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    8. Božič, Dušan & Pantoš, Miloš, 2015. "Impact of electric-drive vehicles on power system reliability," Energy, Elsevier, vol. 83(C), pages 511-520.
    9. Sami M. Alshareef, 2022. "Analyzing and Mitigating the Impacts of Integrating Fast-Charging Stations on the Power Quality in Electric Power Distribution Systems," Sustainability, MDPI, vol. 14(9), pages 1-23, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    2. Jie Hu & Wentong Cao & Feng Jiang & Lingling Hu & Qian Chen & Weiguang Zheng & Junming Zhou, 2023. "Study on Multi-Objective Optimization of Power System Parameters of Battery Electric Vehicles," Sustainability, MDPI, vol. 15(10), pages 1-23, May.
    3. Idiano D’Adamo & Massimo Gastaldi & Jacopo Piccioni & Paolo Rosa, 2023. "The Role of Automotive Flexibility in Supporting the Diffusion of Sustainable Mobility Initiatives: A Stakeholder Attitudes Assessment," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(3), pages 459-481, September.
    4. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    5. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    6. Ruifeng Shi & Yuqin Gao & Jin Ning & Keyi Tang & Limin Jia, 2023. "Research on Highway Self-Consistent Energy System Planning with Uncertain Wind and Photovoltaic Power Output," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    7. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
    8. Khodakarami, Alireza & Farahani, Hassan Feshki & Aghaei, Jamshid, 2017. "Stochastic characterization of electricity energy markets including plug-in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 112-122.
    9. Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    10. Zeng, Bo & Sun, Bo & Wei, Xuan & Gong, Dunwei & Zhao, Dongbo & Singh, Chanan, 2020. "Capacity value estimation of plug-in electric vehicle parking-lots in urban power systems: A physical-social coupling perspective," Applied Energy, Elsevier, vol. 265(C).
    11. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    12. Roberta Riverso & Carmela Altamura & Francesco La Barbera, 2023. "Consumer Intention to Buy Electric Cars: Integrating Uncertainty in the Theory of Planned Behavior," Sustainability, MDPI, vol. 15(11), pages 1-13, May.
    13. Rajeshkumar Ramraj & Ehsan Pashajavid & Sanath Alahakoon & Shantha Jayasinghe, 2023. "Quality of Service and Associated Communication Infrastructure for Electric Vehicles," Energies, MDPI, vol. 16(20), pages 1-28, October.
    14. Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
    15. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).
    16. Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
    17. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).
    18. Foad H. Gandoman & Emad M. Ahmed & Ziad M. Ali & Maitane Berecibar & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    19. Davidov, Sreten & Pantoš, Miloš, 2017. "Stochastic expansion planning of the electric-drive vehicle charging infrastructure," Energy, Elsevier, vol. 141(C), pages 189-201.
    20. Srinath Belakavadi Sudarshan & Gopal Arunkumar, 2023. "Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future," Sustainability, MDPI, vol. 15(3), pages 1-71, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13295-:d:943803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.