IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp189-201.html
   My bibliography  Save this article

Stochastic expansion planning of the electric-drive vehicle charging infrastructure

Author

Listed:
  • Davidov, Sreten
  • Pantoš, Miloš

Abstract

This paper presents a stochastic optimisation model for the long-term expansion planning of the electric vehicle charging infrastructure based on the minimisation of the charging station overall costs subjected to the charging reliability and the requested Quality of Service. In fact, an earlier deterministic optimisation model is upgraded to a stochastic model due to the stochastic nature of the mobility behaviour of electric vehicle drivers, driving range, disposable charging time and the overall costs for different charging technology types. A probabilistic approach is used to generate numerous stochastic trajectories for electric vehicles followed by the newly proposed scenario reduction procedure that employs the new Trajectory Similarity Index to obtain representative trajectories of the stochastic mobility behaviour of electric vehicle drivers. The K-MEANS reduction procedure is also used to derive stochastic scenarios of the electric vehicle driving range, Quality of Service and overall (installation, maintenance, operation) costs, which are subsequently executed by applying an optimisation algorithm together with representative trajectories. The proposed model is verified on a test road network. Results show the optimal charging locations and their placement probability, which exposes their importance to charging infrastructure planners in terms of prioritisation and robust decision-making.

Suggested Citation

  • Davidov, Sreten & Pantoš, Miloš, 2017. "Stochastic expansion planning of the electric-drive vehicle charging infrastructure," Energy, Elsevier, vol. 141(C), pages 189-201.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:189-201
    DOI: 10.1016/j.energy.2017.09.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217315864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fredrik Carlsson & Olof Johansson-Stenman, 2003. "Costs and Benefits of Electric Vehicles," Journal of Transport Economics and Policy, University of Bath, vol. 37(1), pages 1-28, January.
    2. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    3. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    4. V. Chvatal, 1979. "A Greedy Heuristic for the Set-Covering Problem," Mathematics of Operations Research, INFORMS, vol. 4(3), pages 233-235, August.
    5. Shojaabadi, Saeed & Abapour, Saeed & Abapour, Mehdi & Nahavandi, Ali, 2016. "Simultaneous planning of plug-in hybrid electric vehicle charging stations and wind power generation in distribution networks considering uncertainties," Renewable Energy, Elsevier, vol. 99(C), pages 237-252.
    6. Wang, Ying-Wei & Lin, Chuah-Chih, 2009. "Locating road-vehicle refueling stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 821-829, September.
    7. Zhao, Yang & Noori, Mehdi & Tatari, Omer, 2017. "Boosting the adoption and the reliability of renewable energy sources: Mitigating the large-scale wind power intermittency through vehicle to grid technology," Energy, Elsevier, vol. 120(C), pages 608-618.
    8. Pantoš, Miloš, 2011. "Stochastic optimal charging of electric-drive vehicles with renewable energy," Energy, Elsevier, vol. 36(11), pages 6567-6576.
    9. Božič, Dušan & Pantoš, Miloš, 2015. "Impact of electric-drive vehicles on power system reliability," Energy, Elsevier, vol. 83(C), pages 511-520.
    10. Zeng, Bo & Feng, Jiahuan & Zhang, Jianhua & Liu, Zongqi, 2017. "An optimal integrated planning method for supporting growing penetration of electric vehicles in distribution systems," Energy, Elsevier, vol. 126(C), pages 273-284.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bryden, Thomas S. & Hilton, George & Cruden, Andrew & Holton, Tim, 2018. "Electric vehicle fast charging station usage and power requirements," Energy, Elsevier, vol. 152(C), pages 322-332.
    2. Ji, Zhenya & Huang, Xueliang, 2018. "Plug-in electric vehicle charging infrastructure deployment of China towards 2020: Policies, methodologies, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 710-727.
    3. Davidov, Sreten, 2020. "Optimal charging infrastructure planning based on a charging convenience buffer," Energy, Elsevier, vol. 192(C).
    4. Davidov, Sreten & Pantoš, Miloš, 2019. "Optimization model for charging infrastructure planning with electric power system reliability check," Energy, Elsevier, vol. 166(C), pages 886-894.
    5. Bouguenna, Ibrahim Farouk & Azaiz, Ahmed & Tahour, Ahmed & Larbaoui, Ahmed, 2019. "Robust neuro-fuzzy sliding mode control with extended state observer for an electric drive system," Energy, Elsevier, vol. 169(C), pages 1054-1063.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    2. Davidov, Sreten & Pantoš, Miloš, 2017. "Planning of electric vehicle infrastructure based on charging reliability and quality of service," Energy, Elsevier, vol. 118(C), pages 1156-1167.
    3. Nunes, Pedro & Brito, M.C., 2017. "Displacing natural gas with electric vehicles for grid stabilization," Energy, Elsevier, vol. 141(C), pages 87-96.
    4. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    5. Khodakarami, Alireza & Farahani, Hassan Feshki & Aghaei, Jamshid, 2017. "Stochastic characterization of electricity energy markets including plug-in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 112-122.
    6. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    7. Kınay, Ömer Burak & Gzara, Fatma & Alumur, Sibel A., 2021. "Full cover charging station location problem with routing," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 1-22.
    8. Kamran Taghizad-Tavana & As’ad Alizadeh & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan, 2023. "A Comprehensive Review of Electric Vehicles in Energy Systems: Integration with Renewable Energy Sources, Charging Levels, Different Types, and Standards," Energies, MDPI, vol. 16(2), pages 1-23, January.
    9. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    10. Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    11. Davidov, Sreten & Pantoš, Miloš, 2019. "Optimization model for charging infrastructure planning with electric power system reliability check," Energy, Elsevier, vol. 166(C), pages 886-894.
    12. Metais, M.O. & Jouini, O. & Perez, Y. & Berrada, J. & Suomalainen, E., 2022. "Too much or not enough? Planning electric vehicle charging infrastructure: A review of modeling options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    14. Li, Shengyin & Huang, Yongxi, 2014. "Heuristic approaches for the flow-based set covering problem with deviation paths," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 144-158.
    15. Md Shahab Uddin & Pennung Warnitchai, 2020. "Decision support for infrastructure planning: a comprehensive location–allocation model for fire station in complex urban system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1475-1496, July.
    16. Soares, João & Borges, Nuno & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "Scenario generation for electric vehicles' uncertain behavior in a smart city environment," Energy, Elsevier, vol. 111(C), pages 664-675.
    17. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    18. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    19. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    20. Karl Schneeberger & Karl Doerner & Andrea Kurz & Michael Schilde, 2016. "Ambulance location and relocation models in a crisis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 1-27, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:189-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.