IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip1p1100-1110.html
   My bibliography  Save this article

Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems

Author

Listed:
  • Fathabadi, Hassan

Abstract

In this study, different effects of EVs (electric vehicles)/PHEVs (plug-in hybrid electric vehicles) with V2G (vehicle-to-grid) connection capability and renewable energy sources used as DGs (distributed generators) on a power distribution network are analyzed. A power distribution network including CPGs (conventional power generators) located in powerhouses, different types of renewable energy sources consisting of PV (photovoltaic), WT (wind turbine) and FC (fuel cell) systems used as DGs, and EVs with V2G connection capability is considered. Limitations of the power distribution network and an objective function including the power production cost, power loss, and voltage profile that are the most significant parameters of a power grid are defined. The objective function is minimized in the four cases that are the grid with CPGs, the grid with CPGs and DGs, the grid with CPGs and EVs, and the grid with CPGs, DGs and EVs. For the first time, theoretical results together with simulation verifications performed in ETAP/MATLAB environments explicitly verify that the lowest electric power production cost and the best voltage profile are obtained by simultaneously utilizing CPGs, renewable energy sources used as DGs and charging/discharging EVs, while the lowest power loss is obtained by utilizing CPGs and DGs in a grid.

Suggested Citation

  • Fathabadi, Hassan, 2015. "Utilization of electric vehicles and renewable energy sources used as distributed generators for improving characteristics of electric power distribution systems," Energy, Elsevier, vol. 90(P1), pages 1100-1110.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:1100-1110
    DOI: 10.1016/j.energy.2015.06.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215008191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wirba, Asan Vernyuy & Abubakar Mas'ud, Abdullahi & Muhammad-Sukki, Firdaus & Ahmad, Salman & Mat Tahar, Razman & Abdul Rahim, Ruzairi & Munir, Abu Bakar & Karim, Md Ershadul, 2015. "Renewable energy potentials in Cameroon: Prospects and challenges," Renewable Energy, Elsevier, vol. 76(C), pages 560-565.
    2. Al-Mansour, Fouad & Sucic, Boris & Pusnik, Matevz, 2014. "Challenges and prospects of electricity production from renewable energy sources in Slovenia," Energy, Elsevier, vol. 77(C), pages 73-81.
    3. De Gennaro, Michele & Paffumi, Elena & Martini, Giorgio, 2015. "Customer-driven design of the recharge infrastructure and Vehicle-to-Grid in urban areas: A large-scale application for electric vehicles deployment," Energy, Elsevier, vol. 82(C), pages 294-311.
    4. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    5. Ruiz-Romero, Salvador & Colmenar-Santos, Antonio & Gil-Ortego, Rosario & Molina-Bonilla, Antonio, 2013. "Distributed generation: The definitive boost for renewable energy in Spain," Renewable Energy, Elsevier, vol. 53(C), pages 354-364.
    6. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Planning of grid integrated distributed generators: A review of technology, objectives and techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 557-570.
    7. Weiller, C. & Neely, A., 2014. "Using electric vehicles for energy services: Industry perspectives," Energy, Elsevier, vol. 77(C), pages 194-200.
    8. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    9. repec:ipg:wpaper:2014-535 is not listed on IDEAS
    10. Karabiber, Abdulkerim & Keles, Cemal & Kaygusuz, Asim & Alagoz, B. Baykant, 2013. "An approach for the integration of renewable distributed generation in hybrid DC/AC microgrids," Renewable Energy, Elsevier, vol. 52(C), pages 251-259.
    11. Tan, Wen-Shan & Hassan, Mohammad Yusri & Majid, Md Shah & Abdul Rahman, Hasimah, 2013. "Optimal distributed renewable generation planning: A review of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 626-645.
    12. Kayal, Partha & Chanda, C.K., 2015. "Optimal mix of solar and wind distributed generations considering performance improvement of electrical distribution network," Renewable Energy, Elsevier, vol. 75(C), pages 173-186.
    13. Zidan, Aboelsood & El-Saadany, Ehab F., 2013. "Distribution system reconfiguration for energy loss reduction considering the variability of load and local renewable generation," Energy, Elsevier, vol. 59(C), pages 698-707.
    14. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Mokhtar, A.S., 2013. "Renewable energy resources for distributed power generation in Nigeria: A review of the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 257-268.
    15. Hu, Yihua & Cao, Wenping & Ji, Bing & Si, Jikai & Chen, Xiangping, 2015. "New multi-stage DC–DC converters for grid-connected photovoltaic systems," Renewable Energy, Elsevier, vol. 74(C), pages 247-254.
    16. Schneider, Daniel R. & Duić, Neven & Bogdan, Željko, 2007. "Mapping the potential for decentralized energy generation based on renewable energy sources in the Republic of Croatia," Energy, Elsevier, vol. 32(9), pages 1731-1744.
    17. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2013. "Analytical strategies for renewable distributed generation integration considering energy loss minimization," Applied Energy, Elsevier, vol. 105(C), pages 75-85.
    18. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    19. Hedegaard, Karsten & Ravn, Hans & Juul, Nina & Meibom, Peter, 2012. "Effects of electric vehicles on power systems in Northern Europe," Energy, Elsevier, vol. 48(1), pages 356-368.
    20. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    21. Hernandez, J.A. & Velasco, D. & Trujillo, C.L., 2011. "Analysis of the effect of the implementation of photovoltaic systems like option of distributed generation in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2290-2298, June.
    22. Božič, Dušan & Pantoš, Miloš, 2015. "Impact of electric-drive vehicles on power system reliability," Energy, Elsevier, vol. 83(C), pages 511-520.
    23. Bruni, G. & Cordiner, S. & Mulone, V., 2014. "Domestic distributed power generation: Effect of sizing and energy management strategy on the environmental efficiency of a photovoltaic-battery-fuel cell system," Energy, Elsevier, vol. 77(C), pages 133-143.
    24. Fathabadi, Hassan, 2014. "High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles," Energy, Elsevier, vol. 70(C), pages 529-538.
    25. Lin, Shin-Yeu & Chen, Jyun-Fu, 2013. "Distributed optimal power flow for smart grid transmission system with renewable energy sources," Energy, Elsevier, vol. 56(C), pages 184-192.
    26. Omri, Anis & Nguyen, Duc Khuong, 2014. "On the determinants of renewable energy consumption: International evidence," Energy, Elsevier, vol. 72(C), pages 554-560.
    27. Kim, Jong-Soo & Choe, Gyu-Yeong & Kang, Hyun-Soo & Lee, Byoung-Kuk, 2011. "Robust low frequency current ripple elimination algorithm for grid-connected fuel cell systems with power balancing technique," Renewable Energy, Elsevier, vol. 36(5), pages 1392-1400.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    2. Colmenar-Santos, Antonio & Reino-Rio, Cipriano & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1130-1148.
    3. Ehsan, Ali & Yang, Qiang, 2018. "Optimal integration and planning of renewable distributed generation in the power distribution networks: A review of analytical techniques," Applied Energy, Elsevier, vol. 210(C), pages 44-59.
    4. Emmanuel, Michael & Rayudu, Ramesh, 2017. "Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 207-224.
    5. Adil, Ali M. & Ko, Yekang, 2016. "Socio-technical evolution of Decentralized Energy Systems: A critical review and implications for urban planning and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1025-1037.
    6. Tarroja, Brian & Shaffer, Brendan & Samuelsen, Scott, 2015. "The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies," Energy, Elsevier, vol. 87(C), pages 504-519.
    7. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    8. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    9. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    10. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    11. Teixeira, Ana Carolina Rodrigues & Sodré, José Ricardo, 2016. "Simulation of the impacts on carbon dioxide emissions from replacement of a conventional Brazilian taxi fleet by electric vehicles," Energy, Elsevier, vol. 115(P3), pages 1617-1622.
    12. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    13. Mohammed, Nooriya A. & Al-Bazi, Ammar, 2021. "Management of renewable energy production and distribution planning using agent-based modelling," Renewable Energy, Elsevier, vol. 164(C), pages 509-520.
    14. Chaduvula, Hemanth & Das, Debapriya, 2023. "Analysis of microgrid configuration with optimal power injection from grid using point estimate method embedded fuzzy-particle swarm optimization," Energy, Elsevier, vol. 282(C).
    15. Fatih Cemil Ozbugday & Onder Ozgur, 2018. "Advanced Metering Infrastructure and Distributed Generation: Panel Causality Evidence from New Zealand," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 125-137.
    16. Mahesh Kumar & Amir Mahmood Soomro & Waqar Uddin & Laveet Kumar, 2022. "Optimal Multi-Objective Placement and Sizing of Distributed Generation in Distribution System: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-48, October.
    17. Lena Ahmadi & Ali Elkamel & Sabah A. Abdul-Wahab & Michael Pan & Eric Croiset & Peter L. Douglas & Evgueniy Entchev, 2015. "Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration," Energies, MDPI, vol. 8(5), pages 1-25, May.
    18. Jain, Sanjay & Kalambe, Shilpa & Agnihotri, Ganga & Mishra, Anuprita, 2017. "Distributed generation deployment: State-of-the-art of distribution system planning in sustainable era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 363-385.
    19. Unamuno, Eneko & Barrena, Jon Andoni, 2015. "Hybrid ac/dc microgrids—Part I: Review and classification of topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1251-1259.
    20. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p1:p:1100-1110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.