IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5260-d425800.html
   My bibliography  Save this article

A Probabilistic Modeling Based on Monte Carlo Simulation of Wind Powered EV Charging Stations for Steady-States Security Analysis

Author

Listed:
  • Sunoh Kim

    (Department of Electrical Engineering, Sangmyung University, Seoul 03016, Korea)

  • Jin Hur

    (Department of Climate and Energy Systems Engineering, Ewha Womans University, Seoul 03760, Korea)

Abstract

As renewable energy resources such as wind and solar power are developing and the penetration of electric vehicles (EVs) is increasingly integrated into existing systems, uncertainty and variability in power systems have become important issues. The charging demands for EVs and wind power output are recognized as highly variable generation resources (VGRs) with uncertainty, which can cause unexpected disturbances such as short circuits. This can deteriorate the reliability of existing power systems. In response, research is required to identify the uncertainties presented by VGRs and is required to examine the ability of power system models to reflect those uncertainties. The deterministic method, which is the most basic method that is currently in use, does not reflect the uncertainty of system components. Therefore, this paper proposes a probabilistic method to assess the steady-state security of power systems, reflecting the uncertainty of VGRs using Monte Carlo simulation (MCS). In the proposed method, the empirical EVs charging demand and wind power output data are modeled as a probability distribution, and then MCS is performed, integrating the power system operation to represent the steady-state security as a probability index. To verify the method proposed in this paper, a security analysis was performed based on the systems in Jeju Island, South Korea, where the penetration of wind power and EVs is expanding rapidly.

Suggested Citation

  • Sunoh Kim & Jin Hur, 2020. "A Probabilistic Modeling Based on Monte Carlo Simulation of Wind Powered EV Charging Stations for Steady-States Security Analysis," Energies, MDPI, vol. 13(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5260-:d:425800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5260/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5260/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viviani Caroline Onishi & Carlos Henggeler Antunes & João Pedro Fernandes Trovão, 2020. "Optimal Energy and Reserve Market Management in Renewable Microgrid-PEVs Parking Lot Systems: V2G, Demand Response and Sustainability Costs," Energies, MDPI, vol. 13(8), pages 1-24, April.
    2. Khaled Nusair & Feras Alasali, 2020. "Optimal Power Flow Management System for a Power Network with Stochastic Renewable Energy Resources Using Golden Ratio Optimization Method," Energies, MDPI, vol. 13(14), pages 1-46, July.
    3. Buckley, Ian & Saunders, David & Seco, Luis, 2008. "Portfolio optimization when asset returns have the Gaussian mixture distribution," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1434-1461, March.
    4. Hongsheng Su & Dantong Wang & Xuping Duan, 2020. "Condition Maintenance Decision of Wind Turbine Gearbox Based on Stochastic Differential Equation," Energies, MDPI, vol. 13(17), pages 1-13, August.
    5. Zhao, M. & Chen, Z. & Blaabjerg, F., 2006. "Probabilistic capacity of a grid connected wind farm based on optimization method," Renewable Energy, Elsevier, vol. 31(13), pages 2171-2187.
    6. Irwanto, M. & Gomesh, N. & Mamat, M.R. & Yusoff, Y.M., 2014. "Assessment of wind power generation potential in Perlis, Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 296-308.
    7. Yip, Chak Man Andrew & Gunturu, Udaya Bhaskar & Stenchikov, Georgiy L., 2016. "Wind resource characterization in the Arabian Peninsula," Applied Energy, Elsevier, vol. 164(C), pages 826-836.
    8. Gerardo J. Osório & Miadreza Shafie-khah & Pedro D. L. Coimbra & Mohamed Lotfi & João P. S. Catalão, 2018. "Distribution System Operation with Electric Vehicle Charging Schedules and Renewable Energy Resources," Energies, MDPI, vol. 11(11), pages 1-20, November.
    9. Sun, Gaiping & Jiang, Chuanwen & Cheng, Pan & Liu, Yangyang & Wang, Xu & Fu, Yang & He, Yang, 2018. "Short-term wind power forecasts by a synthetical similar time series data mining method," Renewable Energy, Elsevier, vol. 115(C), pages 575-584.
    10. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharmistha Nandi & Sriparna Roy Ghatak & Parimal Acharjee & Fernando Lopes, 2024. "Multi-Scenario-Based Strategic Deployment of Electric Vehicle Ultra-Fast Charging Stations in a Radial Distribution Network," Energies, MDPI, vol. 17(17), pages 1-20, August.
    2. Mohamed El-Hendawi & Zhanle Wang & Raman Paranjape & Shea Pederson & Darcy Kozoriz & James Fick, 2022. "Electric Vehicle Charging Model in the Urban Residential Sector," Energies, MDPI, vol. 15(13), pages 1-21, July.
    3. Eleonora Arena & Alessandro Corsini & Roberto Ferulano & Dario Alfio Iuvara & Eric Stefan Miele & Lorenzo Ricciardi Celsi & Nour Alhuda Sulieman & Massimo Villari, 2021. "Anomaly Detection in Photovoltaic Production Factories via Monte Carlo Pre-Processed Principal Component Analysis," Energies, MDPI, vol. 14(13), pages 1-16, July.
    4. Mohamed S. Hashish & Hany M. Hasanien & Haoran Ji & Abdulaziz Alkuhayli & Mohammed Alharbi & Tlenshiyeva Akmaral & Rania A. Turky & Francisco Jurado & Ahmed O. Badr, 2023. "Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems," Sustainability, MDPI, vol. 15(1), pages 1-25, January.
    5. Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
    6. Noorollahi, Younes & Golshanfard, Aminabbas & Hashemi-Dezaki, Hamed, 2022. "A scenario-based approach for optimal operation of energy hub under different schemes and structures," Energy, Elsevier, vol. 251(C).
    7. Abdulaziz Almutairi, 2022. "Impact Assessment of Diverse EV Charging Infrastructures on Overall Service Reliability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belabes, B. & Youcefi, A. & Guerri, O. & Djamai, M. & Kaabeche, A., 2015. "Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1245-1255.
    2. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Allouhi, A. & Zamzoum, O. & Islam, M.R. & Saidur, R. & Kousksou, T. & Jamil, A. & Derouich, A., 2017. "Evaluation of wind energy potential in Morocco's coastal regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 311-324.
    4. Chitsazan, Mohammad Amin & Sami Fadali, M. & Trzynadlowski, Andrzej M., 2019. "Wind speed and wind direction forecasting using echo state network with nonlinear functions," Renewable Energy, Elsevier, vol. 131(C), pages 879-889.
    5. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    6. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    7. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    8. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    9. Hongsheng Su & Yifan Zhao & Xueqian Wang, 2023. "Analysis of a State Degradation Model and Preventive Maintenance Strategies for Wind Turbine Generators Based on Stochastic Differential Equations," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    10. Camilo Carrillo & José Cidrás & Eloy Díaz-Dorado & Andrés Felipe Obando-Montaño, 2014. "An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain)," Energies, MDPI, vol. 7(4), pages 1-25, April.
    11. Fathabadi, Hassan, 2019. "Recovering waste vibration energy of an automobile using shock absorbers included magnet moving-coil mechanism and adding to overall efficiency using wind turbine," Energy, Elsevier, vol. 189(C).
    12. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    13. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    14. Tiam Kapen, Pascalin & Jeutho Gouajio, Marinette & Yemélé, David, 2020. "Analysis and efficient comparison of ten numerical methods in estimating Weibull parameters for wind energy potential: Application to the city of Bafoussam, Cameroon," Renewable Energy, Elsevier, vol. 159(C), pages 1188-1198.
    15. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    16. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    17. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    18. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    19. Youssef Kassem & Hüseyin Çamur & Ramzi Aateg Faraj Aateg, 2020. "Exploring Solar and Wind Energy as a Power Generation Source for Solving the Electricity Crisis in Libya," Energies, MDPI, vol. 13(14), pages 1-29, July.
    20. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5260-:d:425800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.