IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i20p13087-d940510.html
   My bibliography  Save this article

Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils

Author

Listed:
  • M Barka Outbakat

    (Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Khalil El Mejahed

    (Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Mohamed El Gharous

    (Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

  • Kamal El Omari

    (OCP S.A., Sustainability & Green Industrial Development (SGID), Casablanca 20200, Morocco)

  • Adnane Beniaich

    (Agricultural Innovation and Technology Transfer Center (AITTC), Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco)

Abstract

Salinity is one of the most critical challenges for crop production and soil and water management in arid and semi-arid regions, such as a large area of Morocco. These regions are characterized by low rainfall with an erratic distribution, long drought periods, and high evaporation, resulting in salt accumulation in the superficial layer of the soil and soil and water degradation. Therefore, phosphogypsum (PG) could be a promising amendment to reduce the salinity effect and improve soil quality in salt-affected soils. In this context, the present study aimed to evaluate the effect of PG on the physical properties of Luvisols and Cambisols collected from salt-affected soils in four regions in Morocco: Chichaoua, Ras El Ain, Sidi Zouine, and Sed El Masjoune. The treatments consisted of different rates of PG (15, 30, and 45 t/ha), natural Gypsum (G) (15 t/ha), and control. Our findings revealed that PG application improved soil structure by promoting flocculant action provided by calcium. Linear regression indicated that Water Aggregate Stability (WAS) and PG doses were strongly correlated with a high coefficient of determination (R2 = 93.41%, p value < 0.05). Compared to the control, the overall efficiency of 45 t/ha of PG amendment reached 53%, 95%, and 36%, respectively, in Chichaoua, Ras El Ain, and Sed El Masjoune soils. PG application presented a positive effect on other soil physical properties (soil hydraulic properties, total porosity, and bulk density), especially for the soils of Chichaoua and Ras El Ain regions. The total porosity was increased by 8% with 45 t PG/ha in Ras El Ain soil, and in Chichaoua soil, the bulk density was 5% lower in the pot treated with 45 t PG/ha compared to the control. This study supports the use of PG as an amendment for reclaiming salt-affected soils through monitoring agronomic and environmental impacts.

Suggested Citation

  • M Barka Outbakat & Khalil El Mejahed & Mohamed El Gharous & Kamal El Omari & Adnane Beniaich, 2022. "Effect of Phosphogypsum on Soil Physical Properties in Moroccan Salt-Affected Soils," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13087-:d:940510
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/20/13087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/20/13087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nawal Taaime & Khalil El Mejahed & Mariam Moussafir & Rachid Bouabid & Abdallah Oukarroum & Redouane Choukr-Allah & Mohamed El Gharous, 2022. "Early Sowing of Quinoa Cultivars, Benefits from Rainy Season and Enhances Quinoa Development, Growth, and Yield under Arid Condition in Morocco," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    2. Lamsal, K. & Paudyal, Guna N. & Saeed, M., 1999. "Model for assessing impact of salinity on soil water availability and crop yield," Agricultural Water Management, Elsevier, vol. 41(1), pages 57-70, June.
    3. Ludwig Hermann & Fabian Kraus & Ralf Hermann, 2018. "Phosphorus Processing—Potentials for Higher Efficiency," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    4. Trabelsi, Lina & Gargouri, Kamel & Ben Hassena, Ameni & Mbadra, Chaker & Ghrab, Mohamed & Ncube, Bhekumthetho & Van Staden, Johannes & Gargouri, Radhia, 2019. "Impact of drought and salinity on olive water status and physiological performance in an arid climate," Agricultural Water Management, Elsevier, vol. 213(C), pages 749-759.
    5. Rattan Lal, 2015. "Restoring Soil Quality to Mitigate Soil Degradation," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dima A. Husein Malkawi & Abdallah I. Husein Malkawi & Khaldoon A. Bani-Hani, 2022. "Slope Stability Analysis for the Phosphogypsum Stockpiles: A Case Study for the Sustainable Management of the Phosphogypsum Stacks in Aqaba Jordan," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    2. Salvador F. Acuña-Guzman & L. Darrell Norton, 2023. "Upcycling of FGD Gypsum into a Product to Reduce Interrill Erosion: A Study Assessing Methods of Soil Surface Application," Sustainability, MDPI, vol. 15(3), pages 1-14, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad A. Al-Ghamdi & Yilma Tadesse & Nuru Adgaba & Abdulaziz G. Alghamdi, 2021. "Soil Degradation and Restoration in Southwestern Saudi Arabia through Investigation of Soil Physiochemical Characteristics and Nutrient Status as Indicators," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    2. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2023. "Land Degradation–Desertification in Relation to Farming Practices in India: An Overview of Current Practices and Agro-Policy Perspectives," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    3. Alvyra Slepetiene & Mykola Kochiieru & Linas Jurgutis & Audrone Mankeviciene & Aida Skersiene & Olgirda Belova, 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania," Land, MDPI, vol. 11(1), pages 1-17, January.
    4. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    5. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    6. Ying-Tzy Jou & Elmi Junita Tarigan & Cahyo Prayogo & Chesly Kit Kobua & Yu-Ting Weng & Yu-Min Wang, 2022. "Effects of Sphingobium yanoikuyae SJTF8 on Rice ( Oryza sativa ) Seed Germination and Root Development," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    7. Romero, Pascual & Navarro, Josefa María & Ordaz, Pablo Botía, 2022. "Towards a sustainable viticulture: The combination of deficit irrigation strategies and agroecological practices in Mediterranean vineyards. A review and update," Agricultural Water Management, Elsevier, vol. 259(C).
    8. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    9. Grażyna Żukowska & Magdalena Myszura-Dymek & Szymon Roszkowski & Magdalena Olkiewicz, 2023. "Selected Properties of Soil-like Substrates Made from Mine Coal Waste and Their Effect on Plant Yields," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    10. Anna Kocira & Mariola Staniak & Marzena Tomaszewska & Rafał Kornas & Jacek Cymerman & Katarzyna Panasiewicz & Halina Lipińska, 2020. "Legume Cover Crops as One of the Elements of Strategic Weed Management and Soil Quality Improvement. A Review," Agriculture, MDPI, vol. 10(9), pages 1-41, September.
    11. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    12. Sung Kyu Kim & Fiona Marshall & Neil M. Dawson, 2022. "Revisiting Rwanda’s agricultural intensification policy: benefits of embracing farmer heterogeneity and crop-livestock integration strategies," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 637-656, June.
    13. Muhammad Faisal Saleem & Abdul Ghaffar & Muhammad Habib ur Rahman & Muhammad Imran & Rashid Iqbal & Walid Soufan & Subhan Danish & Rahul Datta & Karthika Rajendran & Ayman EL Sabagh, 2022. "Effect of Short-Term Zero Tillage and Legume Intercrops on Soil Quality, Agronomic and Physiological Aspects of Cotton under Arid Climate," Land, MDPI, vol. 11(2), pages 1-15, February.
    14. Ziauddin Safari & Sayed Tamim Rahimi & Kamal Ahmed & Ahmad Sharafati & Ghaith Falah Ziarh & Shamsuddin Shahid & Tarmizi Ismail & Nadhir Al-Ansari & Eun-Sung Chung & Xiaojun Wang, 2021. "Estimation of Spatial and Seasonal Variability of Soil Erosion in a Cold Arid River Basin in Hindu Kush Mountainous Region Using Remote Sensing," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    15. Jacek Pranagal & Sławomir Ligęza & Halina Smal & Joanna Gmitrowicz-Iwan, 2023. "Effects of Waste Application (Carboniferous Rock and Post-Fermentation Sludge) on Soil Quality," Land, MDPI, vol. 12(2), pages 1-20, February.
    16. Kijne, Jacob W., 2003. "Water productivity under saline conditions," Book Chapters,, International Water Management Institute.
    17. Kijne, Jacob W., 2003. "Water productivity under saline conditions," IWMI Research Reports 158360, International Water Management Institute.
    18. Alberts Auzins & Ieva Leimane & Agnese Krievina & Inga Morozova & Andris Miglavs & Peteris Lakovskis, 2023. "Evaluation of Environmental and Economic Performance of Crop Production in Relation to Crop Rotation, Catch Crops, and Tillage," Agriculture, MDPI, vol. 13(8), pages 1-25, August.
    19. Erika María López-García & Edgardo Torres-Trejo & Lucia López-Reyes & Ángel David Flores-Domínguez & Ricardo Darío Peña-Moreno & Jesús Francisco López-Olguín, 2020. "Estimation of soil erosion using USLE and GIS in the locality of Tzicatlacoyan, Puebla, México," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(1), pages 9-17.
    20. Ajay Kumar & Sushil Kumar & Komal & Nirala Ramchiary & Pardeep Singh, 2021. "Role of Traditional Ethnobotanical Knowledge and Indigenous Communities in Achieving Sustainable Development Goals," Sustainability, MDPI, vol. 13(6), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:20:p:13087-:d:940510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.