IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics0378377424002294.html
   My bibliography  Save this article

Effects of biodegradable film types and drip irrigation amounts on maize growth and field carbon sequestration in arid northwest China

Author

Listed:
  • Liang, Yonghui
  • Wen, Yue
  • Meng, Yu
  • Li, Haiqiang
  • Song, Libing
  • Zhang, Jinzhu
  • Ma, Zhanli
  • Han, Yue
  • Wang, Zhenhua

Abstract

Biodegradable film (BF), as a superior substitute for traditional polyethylene film (PF), has experienced a consistent increase in China. However, a significant research gap persists regarding the utilization of BF in assessing farmland carbon balance. This experiment examined the responses of maize growth, yield, irrigation water productivity (IWP), CO2 emissions, and field net carbon sequestration (NCS) to two BF types (BF1, 100-day induction period, and BF2, 80-day induction period), and PF, and three irrigation amounts (I1, I2, I3: 5250, 5625, and 6000 m3 ha–1), by conducting a two-year (2019–2020) field trial in a typical arid and semi-arid region of China. The results indicated that biodegradable film mulching (BFM) negatively affected maize growth, resulting in reduced yield and IWP. Especially under the I1 irrigation level, the biodegradable film reduced maize yield by 6.26%–13.99% and IWP by 6.64–13.85%. Notably, in the I2 irrigation level, BF1 mulching had a comparable impact on maize yield and IWP to that of PF. Additionally, the increase in irrigation amounts exerted a more pronounced promoting effect on maize total biomass than on yield and IWP. Concerning carbon balance, short-term BF application resulted in reduced CO2 emissions (5.74–6.30% under BF1 and 9.27–12.37% under BF2), without any significant impact on NCS in cropland. Taking into account the economic value of maize and farmland ecology, we recommended utilizing irrigation amounts of 5625 m3 ha–1 for BF application in arid areas, while opting for a BF with a longer induction period whenever feasible.

Suggested Citation

  • Liang, Yonghui & Wen, Yue & Meng, Yu & Li, Haiqiang & Song, Libing & Zhang, Jinzhu & Ma, Zhanli & Han, Yue & Wang, Zhenhua, 2024. "Effects of biodegradable film types and drip irrigation amounts on maize growth and field carbon sequestration in arid northwest China," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002294
    DOI: 10.1016/j.agwat.2024.108894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elshaikh, Ahmed E. & Jiao, Xiyun & Yang, Shi-hong, 2018. "Performance evaluation of irrigation projects: Theories, methods, and techniques," Agricultural Water Management, Elsevier, vol. 203(C), pages 87-96.
    2. Guoqiang Zhang & Dongping Shen & Bo Ming & Ruizhi Xie & Peng Hou & Jun Xue & Keru Wang & Shaokun Li, 2022. "Optimizing Planting Density to Increase Maize Yield and Water Use Efficiency and Economic Return in the Arid Region of Northwest China," Agriculture, MDPI, vol. 12(9), pages 1-12, August.
    3. Liyuan Bo & Xiaomin Mao & Yali Wang, 2022. "Assessing the Applicability of Biodegradable Film Mulching in Northwest China Based on Comprehensive Benefits Study," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    4. Guo, Liangliang & Wang, Xuejie & Wang, Shaobo & Tan, Dechong & Han, Huifang & Ning, Tangyuan & Li, Quanqi, 2019. "Tillage and irrigation effects on carbon emissions and water use of summer maize in North China Plains," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    5. Yi, Jun & Li, Huijie & Zhao, Ying & Shao, Ming'an & Zhang, Hailin & Liu, Muxing, 2022. "Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region," Agricultural Water Management, Elsevier, vol. 265(C).
    6. Wang, Yahui & Li, Sien & Qin, Shujing & Guo, Hui & Yang, Danni & Lam, Hon-Ming, 2020. "How can drip irrigation save water and reduce evapotranspiration compared to border irrigation in arid regions in northwest China," Agricultural Water Management, Elsevier, vol. 239(C).
    7. Meenakshi Sharma & Rajesh Kaushal & Prashant Kaushik & Seeram Ramakrishna, 2021. "Carbon Farming: Prospects and Challenges," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
    8. Zong, Rui & Wang, Zhenhua & Wu, Qiang & Guo, Li & Lin, Henry, 2020. "Characteristics of carbon emissions in cotton fields under mulched drip irrigation," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    10. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Chen, Pengpeng & Li, Yupeng, 2022. "Root characteristics, utilization of water and nitrogen, and yield of maize under biodegradable film mulching and nitrogen application," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Huang, Fangyuan & Liu, Zihan & Li, Zhaoyang & Wang, Bingfan & Zhang, Peng & Jia, ZhiKuan, 2022. "Is biodegradable film an alternative to polyethylene plastic film for improving maize productivity in rainfed agricultural areas? — Evidence from field experiments," Agricultural Water Management, Elsevier, vol. 272(C).
    12. Xian Liu & Yueyue Xu & Shikun Sun & Xining Zhao & Yubao Wang, 2022. "Analysis of the Coupling Characteristics of Water Resources and Food Security: The Case of Northwest China," Agriculture, MDPI, vol. 12(8), pages 1-19, July.
    13. Brodhagen, Marion & Goldberger, Jessica R. & Hayes, Douglas G. & Inglis, Debra Ann & Marsh, Thomas L. & Miles, Carol, 2017. "Policy considerations for limiting unintended residual plastic in agricultural soils," Environmental Science & Policy, Elsevier, vol. 69(C), pages 81-84.
    14. Anwar Abduwaiti & Xiaowei Liu & Changrong Yan & Yinghao Xue & Tuo Jin & Hongqi Wu & Pengcheng He & Zhe Bao & Qin Liu, 2021. "Testing Biodegradable Films as Alternatives to Plastic-Film Mulching for Enhancing the Yield and Economic Benefits of Processed Tomato in Xinjiang Region," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    15. Lu Deng & Yang Yu & Haiyan Zhang & Qian Wang & Ruide Yu, 2019. "The Effects of Biodegradable Mulch Film on the Growth, Yield, and Water Use Efficiency of Cotton and Maize in an Arid Region," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    16. Zong, Rui & Wang, Zhenhua & Zhang, Jinzhu & Li, Wenhao, 2021. "The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China," Agricultural Water Management, Elsevier, vol. 249(C).
    17. Gu, Xiaobo & Cai, Huanjie & Fang, Heng & Chen, Pengpeng & Li, Yupeng & Li, Yuannong, 2021. "Soil hydro-thermal characteristics, maize yield and water use efficiency as affected by different biodegradable film mulching patterns in a rain-fed semi-arid area of China," Agricultural Water Management, Elsevier, vol. 245(C).
    18. Yuan, Xiuliang & Hamdi, Rafiq & Luo, Geping & Bai, Jie & Ochege, Friday Uchenna & Kurban, Alishir & De Maeyer, Philippe & Chen, Xi & Wang, Jin & Termonia, Piet, 2022. "The positive climate impacts of drip irrigation underneath plastic mulch on a typical Mountain-Oasis-Desert System in northwest China," Agricultural Water Management, Elsevier, vol. 273(C).
    19. Silin Cao & Jianhua Xie & Hezheng Wang & Yuxin Yang & Yanhong Zhang & Jinbao Zhou & Shihua Wu, 2022. "Design and Operating Parameters Optimization of the Hook-and-Tooth Chain Rail Type Residual Film Picking Device," Agriculture, MDPI, vol. 12(10), pages 1-21, October.
    20. Zotarelli, Lincoln & Scholberg, Johannes M. & Dukes, Michael D. & Muñoz-Carpena, Rafael & Icerman, Jason, 2009. "Tomato yield, biomass accumulation, root distribution and irrigation water use efficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling," Agricultural Water Management, Elsevier, vol. 96(1), pages 23-34, January.
    21. Wang, Feng & Xie, Ruizhi & Ming, Bo & Wang, Keru & Hou, Peng & Chen, Jianglu & Liu, Guangzhou & Zhang, Guoqiang & Xue, Jun & Li, Shaokun, 2021. "Dry matter accumulation after silking and kernel weight are the key factors for increasing maize yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 254(C).
    22. Sun, Tao & Li, Geng & Ning, Tang-Yuan & Zhang, Zhi-Meng & Mi, Qing-Hua & Lal, Rattan, 2018. "Suitability of mulching with biodegradable film to moderate soil temperature and moisture and to increase photosynthesis and yield in peanut," Agricultural Water Management, Elsevier, vol. 208(C), pages 214-223.
    23. Huang, Ya & Zhang, Zhe & Li, Zhenhua & Dai, Danqiong & Li, Yanping, 2022. "Evaluation of water use efficiency and optimal irrigation quantity of spring maize in Hetao Irrigation District using the Noah-MP Land Surface Model," Agricultural Water Management, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liyuan Bo & Xiaomin Mao & Yali Wang, 2022. "Assessing the Applicability of Biodegradable Film Mulching in Northwest China Based on Comprehensive Benefits Study," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    2. Zhiwen Song & Lei Zhao & Junguo Bi & Qingyun Tang & Guodong Wang & Yuxiang Li, 2024. "Classification of Degradable Mulch Films and Their Promotional Effects and Limitations on Agricultural Production," Agriculture, MDPI, vol. 14(8), pages 1-19, July.
    3. Zhang, Junwei & Xiang, Lingxiao & Zhu, Chenxi & Li, Wuqiang & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Tianlai & Li, Jianming, 2023. "Evaluating the irrigation schedules of greenhouse tomato by simulating soil water balance under drip irrigation," Agricultural Water Management, Elsevier, vol. 283(C).
    4. Anwar Abduwaiti & Xiaowei Liu & Changrong Yan & Yinghao Xue & Tuo Jin & Hongqi Wu & Pengcheng He & Zhe Bao & Qin Liu, 2021. "Testing Biodegradable Films as Alternatives to Plastic-Film Mulching for Enhancing the Yield and Economic Benefits of Processed Tomato in Xinjiang Region," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    5. Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).
    6. Wang, Chunyu & Li, Sien & Wu, Mousong & Zhang, Wenxin & Guo, Zhenyu & Huang, Siyu & Yang, Danni, 2023. "Co-regulation of temperature and moisture in the irrigated agricultural ecosystem productivity," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    8. Fang, Heng & Li, Yuannong & Gu, Xiaobo & Du, Yadan & Chen, Pengpeng & Hu, Hongxiang, 2024. "Evapotranspiration, water use efficiency, and yield for film mulched maize under different nitrogen-fertilization rates and climate conditions," Agricultural Water Management, Elsevier, vol. 301(C).
    9. Sun, Jun & Niu, Wenquan & Du, Yadan & Zhang, Qian & Li, Guochun & Ma, Li & Zhu, Jinjin & Mu, Fei & Sun, Dan & Gan, Haicheng & Siddique, Kadambot H.M. & Ali, Sajjad, 2023. "Combined tillage: A management strategy to improve rainfed maize tolerance to extreme events in northwestern China," Agricultural Water Management, Elsevier, vol. 289(C).
    10. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    11. Zhang, Junwei & Xiang, Lingxiao & Liu, Yuxin & Jing, Dan & Zhang, Lili & Liu, Yong & Li, Wuqiang & Wang, Xiaoyan & Li, Tianlai & Li, Jianming, 2024. "Optimizing irrigation schedules of greenhouse tomato based on a comprehensive evaluation model," Agricultural Water Management, Elsevier, vol. 295(C).
    12. Xu, Xianghui & Chen, Yingshan & Zhou, Yan & Liu, Wuyuan & Zhang, Xinrui & Li, Mo, 2023. "Sustainable management of agricultural water rights trading under uncertainty: An optimization-evaluation framework," Agricultural Water Management, Elsevier, vol. 280(C).
    13. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    14. Patanè, C. & Cosentino, S.L., 2010. "Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate," Agricultural Water Management, Elsevier, vol. 97(1), pages 131-138, January.
    15. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Katsoulas, N. & Sapounas, A. & De Zwart, F. & Dieleman, J.A. & Stanghellini, C., 2015. "Reducing ventilation requirements in semi-closed greenhouses increases water use efficiency," Agricultural Water Management, Elsevier, vol. 156(C), pages 90-99.
    17. Miodrag Tolimir & Branka Kresović & Katarina Gajić & Violeta Anđelković & Milan Brankov & Marijana Dugalić & Boško Gajić, 2024. "Integrated effect of irrigation rate and plant density on yield, yield components and water use efficiency of maize," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(8), pages 475-482.
    18. Dai, Zhiguang & Fei, Liangjun & Huang, Deliang & Zeng, Jian & Chen, Lin & Cai, Yaohui, 2019. "Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region," Agricultural Water Management, Elsevier, vol. 213(C), pages 146-154.
    19. Gołębiewska, Barbara & Grontkowska, Anna & Gębska, Monika, 2020. "Education As The Differentiating Factor In Applying Sustainable Development Principles On Farms," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2020(3).
    20. Yang Xiang & Jianming Kang & Chunyan Zhang & Qiangji Peng & Ningning Zhang & Xiaoyu Wang, 2022. "Analysis and Optimization Test of the Peanut Seeding Process with an Air-Suction Roller Dibbler," Agriculture, MDPI, vol. 12(11), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.