IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v299y2024ics0378377424002294.html
   My bibliography  Save this article

Effects of biodegradable film types and drip irrigation amounts on maize growth and field carbon sequestration in arid northwest China

Author

Listed:
  • Liang, Yonghui
  • Wen, Yue
  • Meng, Yu
  • Li, Haiqiang
  • Song, Libing
  • Zhang, Jinzhu
  • Ma, Zhanli
  • Han, Yue
  • Wang, Zhenhua

Abstract

Biodegradable film (BF), as a superior substitute for traditional polyethylene film (PF), has experienced a consistent increase in China. However, a significant research gap persists regarding the utilization of BF in assessing farmland carbon balance. This experiment examined the responses of maize growth, yield, irrigation water productivity (IWP), CO2 emissions, and field net carbon sequestration (NCS) to two BF types (BF1, 100-day induction period, and BF2, 80-day induction period), and PF, and three irrigation amounts (I1, I2, I3: 5250, 5625, and 6000 m3 ha–1), by conducting a two-year (2019–2020) field trial in a typical arid and semi-arid region of China. The results indicated that biodegradable film mulching (BFM) negatively affected maize growth, resulting in reduced yield and IWP. Especially under the I1 irrigation level, the biodegradable film reduced maize yield by 6.26%–13.99% and IWP by 6.64–13.85%. Notably, in the I2 irrigation level, BF1 mulching had a comparable impact on maize yield and IWP to that of PF. Additionally, the increase in irrigation amounts exerted a more pronounced promoting effect on maize total biomass than on yield and IWP. Concerning carbon balance, short-term BF application resulted in reduced CO2 emissions (5.74–6.30% under BF1 and 9.27–12.37% under BF2), without any significant impact on NCS in cropland. Taking into account the economic value of maize and farmland ecology, we recommended utilizing irrigation amounts of 5625 m3 ha–1 for BF application in arid areas, while opting for a BF with a longer induction period whenever feasible.

Suggested Citation

  • Liang, Yonghui & Wen, Yue & Meng, Yu & Li, Haiqiang & Song, Libing & Zhang, Jinzhu & Ma, Zhanli & Han, Yue & Wang, Zhenhua, 2024. "Effects of biodegradable film types and drip irrigation amounts on maize growth and field carbon sequestration in arid northwest China," Agricultural Water Management, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002294
    DOI: 10.1016/j.agwat.2024.108894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424002294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:299:y:2024:i:c:s0378377424002294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.