IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v13y2024i2ne510.html
   My bibliography  Save this article

Sustainable electrode material from waste plastic for modern energy storage devices

Author

Listed:
  • Kriti Shrivastava
  • Ankur Jain

Abstract

Among the total 17 UN‐SDGs (sustainable development goals) proposed by the United Nations, the goal 7 basically ensures easy global availability of sustainable, clean, cost effective, reliable, and modern energy. Researchers are primarily concentrating on renewable energy sources in this direction since they are sustainable, clean, and environmentally friendly. But there are numerous obstacles, such as their low reliability, irregular nature, remote availability, and so forth, that prevent them from being widely used in commercial applications. Combining these renewable energy sources with effective and affordable energy storage technologies can be a promising solution to approach concerns including rising energy consumption, reliable and consistent electric power, and better grid stability. Modern energy storage systems such as electric double layer capacitor (EDLC) and lithium‐ion batteries have a great deal of potential for a wide range of applications. Carbon‐derived materials are the most flexible and fundamental materials for the storage and conversion of modern energy. Since it requires the pyrolysis and activation of expensive starting materials like wood, petroleum, and coal, the commercially produced activated carbon is costly and unsustainable. Due to rapidly increasing amount of plastic waste and the requirement for sustainable development, the conversion of waste plastics into valuable yet inexpensive carbon nanomaterials have attracted significant research interest. Their outstanding capability for charge accumulation and transportation is due to their enormous surface area, high chemical stability, and electrical conductivity in combination with low density. The present article examines the necessity and the efforts undertaken to develop supercapacitors and Li‐ion batteries as sustainable modern energy storage devices using recycled waste plastic. This article is categorized under: Sustainable Development > Goals Emerging Technologies > Energy Storage

Suggested Citation

  • Kriti Shrivastava & Ankur Jain, 2024. "Sustainable electrode material from waste plastic for modern energy storage devices," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(2), March.
  • Handle: RePEc:bla:wireae:v:13:y:2024:i:2:n:e510
    DOI: 10.1002/wene.510
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.510
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tobias D. Nielsen & Jacob Hasselbalch & Karl Holmberg & Johannes Stripple, 2020. "Politics and the plastic crisis: A review throughout the plastic life cycle," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    2. Hatem Alhazmi & Faris H. Almansour & Zaid Aldhafeeri, 2021. "Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies," Sustainability, MDPI, vol. 13(10), pages 1-21, May.
    3. Kamali, Ali Reza & Li, Siyuan, 2023. "Molten salt-assisted valorization of waste PET plastics into nanostructured SnO2@terephthalic acid with excellent Li-ion storage performance," Applied Energy, Elsevier, vol. 334(C).
    4. de Sisternes, Fernando J. & Jenkins, Jesse D. & Botterud, Audun, 2016. "The value of energy storage in decarbonizing the electricity sector," Applied Energy, Elsevier, vol. 175(C), pages 368-379.
    5. Xu Han & Weidong Liu & Jian-Wen Huang & Jiantao Ma & Yingying Zheng & Tzu-Ping Ko & Limin Xu & Ya-Shan Cheng & Chun-Chi Chen & Rey-Ting Guo, 2017. "Structural insight into catalytic mechanism of PET hydrolase," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    6. Dmitry Porshnov, 2022. "Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    7. Farihahusnah Hussin & Mohamed Kheireddine Aroua & Mohd Azlan Kassim & Umi Fazara Md. Ali, 2021. "Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review," Energies, MDPI, vol. 14(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    2. Abdulmajeed Almadhi & Abdelhakim Abdelhadi & Rakan Alyamani, 2023. "Moving from Linear to Circular Economy in Saudi Arabia: Life-Cycle Assessment on Plastic Waste Management," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    3. De Vivero-Serrano, Gustavo & Bruninx, Kenneth & Delarue, Erik, 2019. "Implications of bid structures on the offering strategies of merchant energy storage systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    5. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    6. Ari, Izzet & Yikmaz, Riza Fikret, 2019. "The role of renewable energy in achieving Turkey's INDC," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 244-251.
    7. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    8. Shapiro, Matthew A., 2020. "Next-generation battery research and development: Non-politicized science at the Joint Center for Energy Storage Research," Energy Policy, Elsevier, vol. 145(C).
    9. Merrick, James H. & Bistline, John E.T. & Blanford, Geoffrey J., 2024. "On representation of energy storage in electricity planning models," Energy Economics, Elsevier, vol. 136(C).
    10. Davis, Dominic & Brear, Michael J., 2024. "Impact of short-term wind forecast accuracy on the performance of decarbonising wholesale electricity markets," Energy Economics, Elsevier, vol. 130(C).
    11. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    12. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    13. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    14. Huijie Yan & Mateo Cordier & Takuro Uehara, 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    15. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    16. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    17. Abhinay Kumar & Rajan Choudhary & Ankush Kumar, 2021. "Characterization of thermal storage stability of waste plastic pyrolytic char modified asphalt binders with sulfur," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-27, March.
    18. Trisia A. Farrelly & Stephanie B. Borrelle & Sascha Fuller, 2021. "The Strengths and Weaknesses of Pacific Islands Plastic Pollution Policy Frameworks," Sustainability, MDPI, vol. 13(3), pages 1-36, January.
    19. Jiang, Yuchen & Li, Xianglin & Li, Chao & Zhang, Lijun & Zhang, Shu & Li, Bin & Wang, Shuang & Hu, Xun, 2022. "Pyrolysis of typical plastics and coupled with steam reforming of their derived volatiles for simultaneous production of hydrogen-rich gases and heavy organics," Renewable Energy, Elsevier, vol. 200(C), pages 476-491.
    20. Xin Li & Konstantinos J. Chalvatzis & Phedeas Stephanides, 2018. "Innovative Energy Islands: Life-Cycle Cost-Benefit Analysis for Battery Energy Storage," Sustainability, MDPI, vol. 10(10), pages 1-19, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:13:y:2024:i:2:n:e510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.