IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p9846-d884086.html
   My bibliography  Save this article

Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro

Author

Listed:
  • T. M. I. Riayatsyah

    (Mechanical Engineering Program, Institut Teknologi Sumatera (ITERA), South Lampung 35365, Indonesia)

  • T. A. Geumpana

    (School of Information and Physical Sciences, University of Newcastle, Newcastle, NSW 2308, Australia)

  • I. M. Rizwanul Fattah

    (School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • T. M. Indra Mahlia

    (School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
    Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

Abstract

This study is about the electrification of the remote islands in the Indian Ocean that were severely affected by the tsunami in the 2004 earth earthquake. To supply electricity to the islands, two diesel generators with capacities of 110 kW and 60 kW were installed in 2019. The feasibility of using renewable energy to supplement or replace the units in these two generators is investigated in this work. In 2019, two diesel generators with capacities of 110 kW and 60 kW were installed in the islands to supply electricity. This work analyses whether the viability of using renewable energy can be used to supplement or replace these two generators. Among the renewable energy options proposed here are a 100 kW wind turbine, solar PV, a converter, and batteries. As a result, the study’s goal is to perform a techno-economic analysis and optimise the proposed hybrid diesel and renewable energy system for a remote island in the Indian Ocean. The Hybrid Optimisation Model for Electric Renewable (HOMER) Pro software was used for all simulations and optimisation for this analysis. The calculation is based on the current diesel price of USD 0.90 per litre (without subsidy). The study found that renewable alone can contribute to 29.2% of renewable energy fractions based on the most optimised systems. The Net Present Cost ( NPC ) decreased from USD 1.65 million to USD 1.39 million, and the levelised Cost of Energy ( CoE ) decreased from 0.292 USD/kWh to 0.246 USD/kWh, respectively. The optimised system’s Internal Rate of Return ( IRR ) is 14% and Return on Investment ( ROI ) 10%, with a simple payback period of 6.7 years. This study shows that it would be technically feasible to introduce renewable energy on a remote island in Indonesia, where numerous islands have no access to electricity.

Suggested Citation

  • T. M. I. Riayatsyah & T. A. Geumpana & I. M. Rizwanul Fattah & T. M. Indra Mahlia, 2022. "Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9846-:d:884086
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/9846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/9846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Burke, Paul J. & Kurniawati, Sandra, 2018. "Electricity subsidy reform in Indonesia: Demand-side effects on electricity use," Energy Policy, Elsevier, vol. 116(C), pages 410-421.
    3. Dabboussi, Moez & Abid, Mehdi, 2022. "A comparative study of sectoral renewable energy consumption and GDP in the U.S.: Evidence from a threshold approach," Renewable Energy, Elsevier, vol. 192(C), pages 705-715.
    4. Leigh Johnson, 2014. "Geographies of Securitized Catastrophe Risk and the Implications of Climate Change," Economic Geography, Taylor & Francis Journals, vol. 90(2), pages 155-185, April.
    5. Nima Norouzi & Alireza Bozorgian & Mohammad Ali Dehghani, 2020. "Best Option of Investment in Renewable Energy: A Multicriteria Decision-Making Analysis for Iranian Energy Industry," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 22(01n02), pages 1-35, June.
    6. Yuchen Yang & Kavan Javanroodi & Vahid M. Nik, 2022. "Climate Change and Renewable Energy Generation in Europe—Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties," Energies, MDPI, vol. 15(1), pages 1-19, January.
    7. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    8. Ma, Wei Wu & Rasul, M.G. & Liu, Gang & Li, Min & Tan, Xiao Hui, 2016. "Climate change impacts on techno-economic performance of roof PV solar system in Australia," Renewable Energy, Elsevier, vol. 88(C), pages 430-438.
    9. Leigh Johnson, 2014. "Geographies of Securitized Catastrophe Risk and the Implications of Climate Change," Economic Geography, Clark University, vol. 90(2), pages 155-185, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uddin, Moslem & Mo, Huadong & Dong, Daoyi & Elsawah, Sondoss, 2023. "Techno-economic potential of multi-energy community microgrid: The perspective of Australia," Renewable Energy, Elsevier, vol. 219(P2).
    2. Mehdi Jahangiri & Yasaman Yousefi & Iman Pishkar & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahabaddin Hosseini Dehshiri & Seyyed Mohammad Fatemi Vanani, 2023. "Techno–Econo–Enviro Energy Analysis, Ranking and Optimization of Various Building-Integrated Photovoltaic (BIPV) Types in Different Climatic Regions of Iran," Energies, MDPI, vol. 16(1), pages 1-25, January.
    3. Elena Sosnina & Andrey Dar’enkov & Andrey Kurkin & Ivan Lipuzhin & Andrey Mamonov, 2022. "Review of Efficiency Improvement Technologies of Wind Diesel Hybrid Systems for Decreasing Fuel Consumption," Energies, MDPI, vol. 16(1), pages 1-38, December.
    4. Mahtab Murshed & Manohar Chamana & Konrad Erich Kork Schmitt & Rabindra Bhatta & Olatunji Adeyanju & Stephen Bayne, 2023. "Design and Performance Analysis of a Grid-Connected Distributed Wind Turbine," Energies, MDPI, vol. 16(15), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leigh Johnson, 2013. "Index Insurance and the Articulation of Risk-Bearing Subjects," Environment and Planning A, , vol. 45(11), pages 2663-2681, November.
    2. Linnenluecke, Martina K. & Smith, Tom & McKnight, Brent, 2016. "Environmental finance: A research agenda for interdisciplinary finance research," Economic Modelling, Elsevier, vol. 59(C), pages 124-130.
    3. Zac J. Taylor, 2020. "The real estate risk fix: Residential insurance-linked securitization in the Florida metropolis," Environment and Planning A, , vol. 52(6), pages 1131-1149, September.
    4. Brett Christophers & Patrick Bigger & Leigh Johnson, 2020. "Stretching scales? Risk and sociality in climate finance," Environment and Planning A, , vol. 52(1), pages 88-110, February.
    5. Svenja Keele, 2019. "Consultants and the business of climate services: implications of shifting from public to private science," Climatic Change, Springer, vol. 157(1), pages 9-26, November.
    6. T. M. I. Riayatsyah & T. A. Geumpana & I. M. Rizwanul Fattah & Samsul Rizal & T. M. Indra Mahlia, 2022. "Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    7. Nasser Yimen & Oumarou Hamandjoda & Lucien Meva’a & Benoit Ndzana & Jean Nganhou, 2018. "Analyzing of a Photovoltaic/Wind/Biogas/Pumped-Hydro Off-Grid Hybrid System for Rural Electrification in Sub-Saharan Africa—Case Study of Djoundé in Northern Cameroon," Energies, MDPI, vol. 11(10), pages 1-30, October.
    8. Fazlur Rashid & Md. Emdadul Hoque & Muhammad Aziz & Talukdar Nazmus Sakib & Md. Tariqul Islam & Raihan Moker Robin, 2021. "Investigation of Optimal Hybrid Energy Systems Using Available Energy Sources in a Rural Area of Bangladesh," Energies, MDPI, vol. 14(18), pages 1-24, September.
    9. Ramesh Kumar Arunachalam & Kumar Chandrasekaran & Eugen Rusu & Nagananthini Ravichandran & Hady H. Fayek, 2023. "Economic Feasibility of a Hybrid Microgrid System for a Distributed Substation," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    10. Eakin, Hallie & Keele, Svenja & Lueck, Vanessa, 2022. "Uncomfortable knowledge: Mechanisms of urban development in adaptation governance," World Development, Elsevier, vol. 159(C).
    11. Kate Booth & Dave Kendal, 2020. "Underinsurance as adaptation: Household agency in places of marketisation and financialisation," Environment and Planning A, , vol. 52(4), pages 728-746, June.
    12. Christian L. E. Franzke, 2017. "Impacts of a Changing Climate on Economic Damages and Insurance," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 95-110, June.
    13. Sarah Knuth & Shaina Potts & Jenny E. Goldstein, 2019. "In value’s shadows: Devaluation as accumulation frontier," Environment and Planning A, , vol. 51(2), pages 461-466, March.
    14. Madeleine Fairbairn & Jim LaChance & Kathryn Teigen De Master & Loka Ashwood, 2021. "In vino veritas, in aqua lucrum: Farmland investment, environmental uncertainty, and groundwater access in California’s Cuyama Valley," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(1), pages 285-299, February.
    15. Stefan Ouma & Leigh Johnson & Patrick Bigger, 2018. "Rethinking the financialization of ‘nature’," Environment and Planning A, , vol. 50(3), pages 500-511, May.
    16. Li, Jinze & Liu, Pei & Li, Zheng, 2020. "Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China," Energy, Elsevier, vol. 208(C).
    17. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    18. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    19. Syed Hasan & Odmaa Narantungalag, & Martin Berka, 2022. "The intended and unintended consequences of large electricity subsidies: evidence from Mongolia," Discussion Papers 2202, School of Economics and Finance, Massey University, New Zealand.
    20. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9846-:d:884086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.