IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5778-d1209667.html
   My bibliography  Save this article

Design and Performance Analysis of a Grid-Connected Distributed Wind Turbine

Author

Listed:
  • Mahtab Murshed

    (Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA)

  • Manohar Chamana

    (National Wind Institute, Texas Tech University, Lubbock, TX 79409, USA)

  • Konrad Erich Kork Schmitt

    (Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA)

  • Rabindra Bhatta

    (Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA)

  • Olatunji Adeyanju

    (National Wind Institute, Texas Tech University, Lubbock, TX 79409, USA)

  • Stephen Bayne

    (Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409, USA)

Abstract

The utilization of wind energy has become increasingly popular in the United States and many European countries due to its abundant nature and optimized design. While existing wind turbines are predominantly large-scale and not suitable for standalone or distributed power production, Lubbock County in West Texas offers a diverse range of renewable energy options to meet its energy needs. The region relies heavily on utility-scale wind energy sources to supply power to the Texas Grid, replacing conventional fossil fuel-based systems. Currently, standalone solar PV systems are the preferred choice for renewable energy generation. However, West Texas possesses an ample supply of wind energy that can be harnessed to establish a microgrid and provide standalone power to rural communities. Distributed wind energy offers localized power generation, reducing transmission losses and grid strain, while conventional wind farms require long-distance transmission, leading to efficiency gains. By employing the latest technology and optimizing efficiency, even in low-scale generation, a 6-kilowatt permanent magnet alternator-based distributed wind turbine has been designed. This paper focuses on analyzing the techno-economic aspects of implementing this wind turbine in a real-world scenario, taking into account wind attributes, such as velocity and available power, at the specific location.

Suggested Citation

  • Mahtab Murshed & Manohar Chamana & Konrad Erich Kork Schmitt & Rabindra Bhatta & Olatunji Adeyanju & Stephen Bayne, 2023. "Design and Performance Analysis of a Grid-Connected Distributed Wind Turbine," Energies, MDPI, vol. 16(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5778-:d:1209667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. T. M. I. Riayatsyah & T. A. Geumpana & I. M. Rizwanul Fattah & T. M. Indra Mahlia, 2022. "Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    2. Philip R. Berke & Thomas J. Campanella, 2006. "Planning for Postdisaster Resiliency," The ANNALS of the American Academy of Political and Social Science, , vol. 604(1), pages 192-207, March.
    3. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    4. Toke, David & Breukers, Sylvia & Wolsink, Maarten, 2008. "Wind power deployment outcomes: How can we account for the differences?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1129-1147, May.
    5. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    6. Swofford, Jeffrey & Slattery, Michael, 2010. "Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making," Energy Policy, Elsevier, vol. 38(5), pages 2508-2519, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Slattery, Michael C. & Johnson, Becky L. & Swofford, Jeffrey A. & Pasqualetti, Martin J., 2012. "The predominance of economic development in the support for large-scale wind farms in the U.S. Great Plains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3690-3701.
    2. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    3. Simón, Xavier & Copena, Damián & Montero, María, 2019. "Strong wind development with no community participation. The case of Galicia (1995–2009)," Energy Policy, Elsevier, vol. 133(C).
    4. Langer, Katharina & Decker, Thomas & Menrad, Klaus, 2017. "Public participation in wind energy projects located in Germany: Which form of participation is the key to acceptance?," Renewable Energy, Elsevier, vol. 112(C), pages 63-73.
    5. Langer, Katharina & Decker, Thomas & Roosen, Jutta & Menrad, Klaus, 2016. "A qualitative analysis to understand the acceptance of wind energy in Bavaria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 248-259.
    6. Baxter, Jamie & Morzaria, Rakhee & Hirsch, Rachel, 2013. "A case-control study of support/opposition to wind turbines: Perceptions of health risk, economic benefits, and community conflict," Energy Policy, Elsevier, vol. 61(C), pages 931-943.
    7. Federica Daniele & Guido de Blasio & Alessandra Pasquini, 2024. "Is local opposition taking the wind out of the energy transition?," Papers 2406.03022, arXiv.org.
    8. Gorsevski, Pece V. & Cathcart, Steven C. & Mirzaei, Golrokh & Jamali, Mohsin M. & Ye, Xinyue & Gomezdelcampo, Enrique, 2013. "A group-based spatial decision support system for wind farm site selection in Northwest Ohio," Energy Policy, Elsevier, vol. 55(C), pages 374-385.
    9. Pepermans, Yves & Loots, Ilse, 2013. "Wind farm struggles in Flanders fields: A sociological perspective," Energy Policy, Elsevier, vol. 59(C), pages 321-328.
    10. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    11. Harper, Michael & Anderson, Ben & James, Patrick A.B. & Bahaj, AbuBakr S., 2019. "Onshore wind and the likelihood of planning acceptance: Learning from a Great Britain context," Energy Policy, Elsevier, vol. 128(C), pages 954-966.
    12. van Rensburg, Thomas M. & Kelley, Hugh & Jeserich, Nadine, 2015. "What influences the probability of wind farm planning approval: Evidence from Ireland," Ecological Economics, Elsevier, vol. 111(C), pages 12-22.
    13. Yenneti, Komali & Day, Rosie, 2015. "Procedural (in)justice in the implementation of solar energy: The case of Charanaka solar park, Gujarat, India," Energy Policy, Elsevier, vol. 86(C), pages 664-673.
    14. Eduardo Martínez-Mendoza & Luis Arturo Rivas-Tovar & Luis Enrique García-Santamaría, 2021. "Wind energy in the Isthmus of Tehuantepec: conflicts and social implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11706-11731, August.
    15. Nelson, Hal T. & Wikstrom, Kris & Hass, Samantha & Sarle, Kirsten, 2021. "Half-length and the FACT framework: Distance-decay and citizen opposition to energy facilities," Land Use Policy, Elsevier, vol. 101(C).
    16. Jones, Christopher R. & Richard Eiser, J., 2010. "Understanding 'local' opposition to wind development in the UK: How big is a backyard?," Energy Policy, Elsevier, vol. 38(6), pages 3106-3117, June.
    17. Musall, Fabian David & Kuik, Onno, 2011. "Local acceptance of renewable energy--A case study from southeast Germany," Energy Policy, Elsevier, vol. 39(6), pages 3252-3260, June.
    18. Sirr, Gordon & Power, Bernadette & Ryan, Geraldine & Eakins, John & O’Connor, Ellen & le Maitre, Julia, 2023. "An analysis of the factors affecting Irish citizens’ willingness to invest in wind energy projects," Energy Policy, Elsevier, vol. 173(C).
    19. Brannstrom, Christian & Gorayeb, Adryane & de Sousa Mendes, Jocicléa & Loureiro, Caroline & Meireles, Antonio Jeovah de Andrade & Silva, Edson Vicente da & Freitas, Ana Larissa Ribeiro de & Oliveira, , 2017. "Is Brazilian wind power development sustainable? Insights from a review of conflicts in Ceará state," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 62-71.
    20. Groth, Theresa M. & Vogt, Christine, 2014. "Residents' perceptions of wind turbines: An analysis of two townships in Michigan," Energy Policy, Elsevier, vol. 65(C), pages 251-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5778-:d:1209667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.