IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p7735-d847081.html
   My bibliography  Save this article

Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid

Author

Listed:
  • T. M. I. Riayatsyah

    (Mechanical Engineering Program, Institut Teknologi Sumatera (ITERA), South Lampung 35365, Indonesia)

  • T. A. Geumpana

    (School of Information and Physical Science, University of Newcastle, Newcastle, NSW 2308, Australia)

  • I. M. Rizwanul Fattah

    (Centre for Green Technology, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Samsul Rizal

    (Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia)

  • T. M. Indra Mahlia

    (Centre for Green Technology, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
    Department of Mechanical Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

Abstract

This study aimed to conduct a techno-economic performance and optimisation analysis of grid-connected PV, wind turbines, and battery packs for Syiah Kuala University, situated at the tip of Sumatra island in the tsunami-affected region. The simulation software Hybrid Optimisation Model for Electric Renewables (HOMER) was used to analyse and optimise the renewable energy required by the institution. The methodology began with the location specification, average electric load demand, daily radiation, clearness index, location daily temperature, and system architecture. The results revealed that the energy storage system was initially included in the simulation, but it was later removed in order to save money and optimise the share of renewable energy. Based on the optimisation results, two types of energy sources were chosen for the system, solar PV and wind turbine, which contributed 62% and 20%, respectively. Apart from the renewable energy faction, another reason for the system selection is cost of energy ( CoE ), which decreased to $0.0446/kWh from $0.060/kWh. In conclusion, the study found that by connecting solar PV and wind turbines to the local grid, this renewable energy system is able to contribute up to 82% of the electricity required. However, the obstacle to implementing renewable energy in Indonesia is the cheap electricity price that is mainly generated using cheap coal, which is abundantly available in the country.

Suggested Citation

  • T. M. I. Riayatsyah & T. A. Geumpana & I. M. Rizwanul Fattah & Samsul Rizal & T. M. Indra Mahlia, 2022. "Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7735-:d:847081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/7735/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/7735/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    2. Türkay, Belgin Emre & Telli, Ali Yasin, 2011. "Economic analysis of standalone and grid connected hybrid energy systems," Renewable Energy, Elsevier, vol. 36(7), pages 1931-1943.
    3. Otsuki, Takashi, 2017. "Costs and benefits of large-scale deployment of wind turbines and solar PV in Mongolia for international power exports," Renewable Energy, Elsevier, vol. 108(C), pages 321-335.
    4. Nima Norouzi & Alireza Bozorgian & Mohammad Ali Dehghani, 2020. "Best Option of Investment in Renewable Energy: A Multicriteria Decision-Making Analysis for Iranian Energy Industry," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 22(01n02), pages 1-35, June.
    5. Shoeibi, Shahin & Kargarsharifabad, Hadi & Mirjalily, Seyed Ali Agha & Zargarazad, Mojtaba, 2021. "Performance analysis of finned photovoltaic/thermal solar air dryer with using a compound parabolic concentrator," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abeer Abdullah Al Anazi & Abdullah Albaker & Wongchai Anupong & Abdul Rab Asary & Rajabov Sherzod Umurzoqovich & Iskandar Muda & Rosario Mireya Romero-Parra & Reza Alayi & Laveet Kumar, 2022. "Technical, Economic, and Environmental Analysis and Comparison of Different Scenarios for the Grid-Connected PV Power Plant," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    2. Polash Ahmed & Md. Ferdous Rahman & A. K. M. Mahmudul Haque & Mustafa K. A. Mohammed & G. F. Ishraque Toki & Md. Hasan Ali & Abdul Kuddus & M. H. K. Rubel & M. Khalid Hossain, 2023. "Feasibility and Techno-Economic Evaluation of Hybrid Photovoltaic System: A Rural Healthcare Center in Bangladesh," Sustainability, MDPI, vol. 15(2), pages 1-14, January.
    3. Rania M. Ghoniem & Ali Alahmer & Hegazy Rezk & Samer As’ad, 2023. "Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    4. Altin, Cemil, 2024. "Investigation of the effects of synthetic wind speed parameters and wind speed distribution on system size and cost in hybrid renewable energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    5. Jieun Ihm & Bilal Amghar & Sejin Chun & Herie Park, 2023. "Optimum Design of an Electric Vehicle Charging Station Using a Renewable Power Generation System in South Korea," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    6. Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
    7. Abdulaziz Alanazi & Mohana Alanazi, 2023. "Multicriteria Decision-Making for Evaluating Solar Energy Source of Saudi Arabia," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    8. Dodo, Usman Alhaji & Salami, Babatunde Abiodun & Bashir, Faizah Mohammed & Hamdoun, Haifa Youssef & Rashed Alsadun, Ibtihaj Saad & Dodo, Yakubu Aminu & Usman, A.G. & Abba, Sani I., 2024. "Investigating the influence of erratic grid on stationary battery energy storage technologies in hybrid power systems: Techno-environ-economic perspectives," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Sharjeel Ali & Syed Umaid Ali & Saeed Mian Qaisar & Asad Waqar & Faheem Haroon & Ahmad Alzahrani, 2022. "Techno-Economic Analysis of Hybrid Renewable Energy-Based Electricity Supply to Gwadar, Pakistan," Sustainability, MDPI, vol. 14(23), pages 1-25, December.
    2. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    3. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    4. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    5. Han, Seulki & Won, Wangyun & Kim, Jiyong, 2017. "Scenario-based approach for design and comparatively analysis of conventional and renewable energy systems," Energy, Elsevier, vol. 129(C), pages 86-100.
    6. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    7. Goel, Sonali & Sharma, Renu, 2017. "Performance evaluation of stand alone, grid connected and hybrid renewable energy systems for rural application: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1378-1389.
    8. T. M. I. Riayatsyah & T. A. Geumpana & I. M. Rizwanul Fattah & T. M. Indra Mahlia, 2022. "Techno-Economic Analysis of Hybrid Diesel Generators and Renewable Energy for a Remote Island in the Indian Ocean Using HOMER Pro," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    9. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    10. Bhatt, Ankit & Sharma, M.P. & Saini, R.P., 2016. "Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 53-69.
    11. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    12. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    13. Sanjeevikumar Padmanaban & Mahajan Sagar Bhaskar & Pandav Kiran Maroti & Frede Blaabjerg & Viliam Fedák, 2018. "An Original Transformer and Switched-Capacitor (T & SC)-Based Extension for DC-DC Boost Converter for High-Voltage/Low-Current Renewable Energy Applications: Hardware Implementation of a New T & SC Bo," Energies, MDPI, vol. 11(4), pages 1-23, March.
    14. Ye, Bin & Yang, Peng & Jiang, Jingjing & Miao, Lixin & Shen, Bo & Li, Ji, 2017. "Feasibility and economic analysis of a renewable energy powered special town in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 40-50.
    15. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    16. López-González, A. & Domenech, B. & Ferrer-Martí, L., 2018. "Formative evaluation of sustainability in rural electrification programs from a management perspective: A case study from Venezuela," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 95-109.
    17. Maammeur, H. & Hamidat, A. & Loukarfi, L. & Missoum, M. & Abdeladim, K. & Nacer, T., 2017. "Performance investigation of grid-connected PV systems for family farms: case study of North-West of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1208-1220.
    18. Sen, Rohit & Bhattacharyya, Subhes C., 2014. "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER," Renewable Energy, Elsevier, vol. 62(C), pages 388-398.
    19. Eunil Park & Sang Jib Kwon & Angel P. Del Pobil, 2016. "For a Green Stadium: Economic Feasibility of Sustainable Renewable Electricity Generation at the Jeju World Cup Venue," Sustainability, MDPI, vol. 8(10), pages 1-11, September.
    20. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7735-:d:847081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.