IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4803-d1006138.html
   My bibliography  Save this article

A Novel Approach to Integrating Uncertainty into a Push Re-Label Network Flow Algorithm for Pit Optimization

Author

Listed:
  • Devendra Joshi

    (Department of CSE, Koneru Lakshmaiah Education Foundation, Guntur 522002, India)

  • Marwan Ali Albahar

    (Department of Computer Science, Umm Al Qura University, Mecca 24382, Saudi Arabia)

  • Premkumar Chithaluru

    (Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Hyderabad 500075, India
    Department of Project Management, Universidad Internacional Iberoamericana, Campeche C.P. 24560, Mexico)

  • Aman Singh

    (Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
    Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India)

  • Arvind Yadav

    (Department of CSE, Koneru Lakshmaiah Education Foundation, Guntur 522002, India)

  • Yini Miro

    (Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
    Department of Engineering, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA)

Abstract

The standard optimization of open-pit mine design and production scheduling, which is impacted by a variety of factors, is an essential part of mining activities. The metal uncertainty, which is connected to supply uncertainty, is a crucial component in optimization. To address uncertainties regarding the economic value of mining blocks and the general problem of mine design optimization, a minimum-cut network flow algorithm is employed to give the optimal ultimate pit limits and pushback designs under uncertainty. A structure that is computationally effective and can manage the joint presentation and treatment of the economic values of mining blocks under various circumstances is created by the push re-label minimum-cut technique. In this study, the algorithm is put to the test using a copper deposit and shows similarities to other stochastic optimizers for mine planning that have already been created. Higher possibilities of reaching predicted production targets are created by the algorithm’s earlier selection of more certain blocks with blocks of high value. Results show that, in comparison to a conventional approach using the same algorithm, the cumulative metal output is larger when the uncertainty in the metal content is taken into consideration. There is also an additional 10% gain in net present value.

Suggested Citation

  • Devendra Joshi & Marwan Ali Albahar & Premkumar Chithaluru & Aman Singh & Arvind Yadav & Yini Miro, 2022. "A Novel Approach to Integrating Uncertainty into a Push Re-Label Network Flow Algorithm for Pit Optimization," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4803-:d:1006138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. W. Lambert & A. Newman, 2014. "Tailored Lagrangian Relaxation for the open pit block sequencing problem," Annals of Operations Research, Springer, vol. 222(1), pages 419-438, November.
    2. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    3. Luis Montiel & Roussos Dimitrakopoulos, 2017. "A heuristic approach for the stochastic optimization of mine production schedules," Journal of Heuristics, Springer, vol. 23(5), pages 397-415, October.
    4. Adrien Rimélé, M. & Dimitrakopoulos, Roussos & Gamache, Michel, 2018. "A stochastic optimization method with in-pit waste and tailings disposal for open pit life-of-mine production planning," Resources Policy, Elsevier, vol. 57(C), pages 112-121.
    5. Ramazan, Salih, 2007. "The new Fundamental Tree Algorithm for production scheduling of open pit mines," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1153-1166, March.
    6. Lamghari, Amina & Dimitrakopoulos, Roussos, 2012. "A diversified Tabu search approach for the open-pit mine production scheduling problem with metal uncertainty," European Journal of Operational Research, Elsevier, vol. 222(3), pages 642-652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samavati, Mehran & Essam, Daryl & Nehring, Micah & Sarker, Ruhul, 2017. "A methodology for the large-scale multi-period precedence-constrained knapsack problem: an application in the mining industry," International Journal of Production Economics, Elsevier, vol. 193(C), pages 12-20.
    2. Gilani, Seyyed-Omid & Sattarvand, Javad & Hajihassani, Mohsen & Abdullah, Shahrum Shah, 2020. "A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty," Resources Policy, Elsevier, vol. 68(C).
    3. Rimélé, Adrien & Dimitrakopoulos, Roussos & Gamache, Michel, 2020. "A dynamic stochastic programming approach for open-pit mine planning with geological and commodity price uncertainty," Resources Policy, Elsevier, vol. 65(C).
    4. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    5. Amina Lamghari & Roussos Dimitrakopoulos & Jacques Ferland, 2015. "A hybrid method based on linear programming and variable neighborhood descent for scheduling production in open-pit mines," Journal of Global Optimization, Springer, vol. 63(3), pages 555-582, November.
    6. Chatterjee, Snehamoy & Sethi, Manas Ranjan & Asad, Mohammad Waqar Ali, 2016. "Production phase and ultimate pit limit design under commodity price uncertainty," European Journal of Operational Research, Elsevier, vol. 248(2), pages 658-667.
    7. Jélvez, Enrique & Morales, Nelson & Nancel-Penard, Pierre & Cornillier, Fabien, 2020. "A new hybrid heuristic algorithm for the Precedence Constrained Production Scheduling Problem: A mining application," Omega, Elsevier, vol. 94(C).
    8. Del Castillo, M. Fernanda & Dimitrakopoulos, Roussos, 2019. "Dynamically optimizing the strategic plan of mining complexes under supply uncertainty," Resources Policy, Elsevier, vol. 60(C), pages 83-93.
    9. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.
    10. Mai, Ngoc Luan & Topal, Erkan & Erten, Oktay & Sommerville, Bruce, 2019. "A new risk-based optimisation method for the iron ore production scheduling using stochastic integer programming," Resources Policy, Elsevier, vol. 62(C), pages 571-579.
    11. Burdett, R.L. & Kozan, E., 2014. "An integrated approach for earthwork allocation, sequencing and routing," European Journal of Operational Research, Elsevier, vol. 238(3), pages 741-759.
    12. Devendra Joshi & Hamed Gholami & Hitesh Mohapatra & Anis Ali & Dalia Streimikiene & Susanta Kumar Satpathy & Arvind Yadav, 2022. "The Application of Stochastic Mine Production Scheduling in the Presence of Geological Uncertainty," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    13. Danish, Abid Ali Khan & Khan, Asif & Muhammad, Khan & Ahmad, Waqas & Salman, Saad, 2021. "A simulated annealing based approach for open pit mine production scheduling with stockpiling option," Resources Policy, Elsevier, vol. 71(C).
    14. Shishvan, Masoud Soleymani & Sattarvand, Javad, 2015. "Long term production planning of open pit mines by ant colony optimization," European Journal of Operational Research, Elsevier, vol. 240(3), pages 825-836.
    15. Levinson, Zachary & Dimitrakopoulos, Roussos, 2023. "Connecting planning horizons in mining complexes with reinforcement learning and stochastic programming," Resources Policy, Elsevier, vol. 86(PB).
    16. Zhang, Jian & Nault, Barrie R. & Dimitrakopoulos, Roussos G., 2019. "Optimizing a mineral value chain with market uncertainty using benders decomposition," European Journal of Operational Research, Elsevier, vol. 274(1), pages 227-239.
    17. Lin, Jingsi & Asad, Mohammad Waqar Ali & Topal, Erkan & Chang, Ping & Huang, Jinxin & Lin, Wei, 2024. "A novel model for sustainable production scheduling of an open-pit mining complex considering waste encapsulation," Resources Policy, Elsevier, vol. 91(C).
    18. Armstrong, Margaret & Lagos, Tomas & Emery, Xavier & Homem-de-Mello, Tito & Lagos, Guido & Sauré, Denis, 2021. "Adaptive open-pit mining planning under geological uncertainty," Resources Policy, Elsevier, vol. 72(C).
    19. Parviz Sohrabi & Hesam Dehghani & Behshad Jodeiri Shokri, 2022. "Determination of optimal production rate under price uncertainty—Sari Gunay gold mine, Iran," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 35(2), pages 187-201, June.
    20. Zhang, Jian & Dimitrakopoulos, Roussos G., 2017. "A dynamic-material-value-based decomposition method for optimizing a mineral value chain with uncertainty," European Journal of Operational Research, Elsevier, vol. 258(2), pages 617-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4803-:d:1006138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.