IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v27y2022i2d10.1007_s11027-021-09977-y.html
   My bibliography  Save this article

How to promote sustainable adoption of residential distributed photovoltaic generation in China? An employment of incentive and punitive policies

Author

Listed:
  • Shuai Wang

    (Hefei University of Technology)

  • Yao Li

    (Hefei University of Technology)

  • Junjun Jia

    (Hefei University of Technology)

Abstract

The development of residential solar photovoltaic has not achieved the desired target albeit with numerous incentive policies from Chinese government. How to promote sustainable adoption of residential distributed photovoltaic generation remains an open question. This paper provides theoretical explanations by establishing an evolutionary game model between governments and residents, and casts light on the effect of hybrid incentive and punitive policies on residents’ decision-makings and system evolutions. Specifically, four hybrid schemes, namely, static subsidy and static taxation, dynamic subsidy and static taxation, static subsidy and dynamic taxation, dynamic subsidy and dynamic taxation, are mathematically analyzed under the framework of evolutionary game. Case study of China demonstrates that current incentive policies cannot yield sustainable residential PV adoption in the long term. An employment of dynamic subsidies and static taxation is the most effective and feasible policy scheme in stabilizing the PV development pattern among residents and governments. Furthermore, we analyze the influence of coal-fired electricity price and taxation level fluctuation under the most preferred policy scheme. This study provides an insight into how to promote residential solar PV’s long-term development and contributes to provide implications for policy-makers in the enforcement of green electricity.

Suggested Citation

  • Shuai Wang & Yao Li & Junjun Jia, 2022. "How to promote sustainable adoption of residential distributed photovoltaic generation in China? An employment of incentive and punitive policies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-26, February.
  • Handle: RePEc:spr:masfgc:v:27:y:2022:i:2:d:10.1007_s11027-021-09977-y
    DOI: 10.1007/s11027-021-09977-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-021-09977-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-021-09977-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    2. Yamamoto, Yoshihiro, 2017. "Feed-in tariffs combined with capital subsidies for promoting the adoption of residential photovoltaic systems," Energy Policy, Elsevier, vol. 111(C), pages 312-320.
    3. Robinson, Scott A. & Rai, Varun, 2015. "Determinants of spatio-temporal patterns of energy technology adoption: An agent-based modeling approach," Applied Energy, Elsevier, vol. 151(C), pages 273-284.
    4. Zhang, Fang & Deng, Hao & Margolis, Robert & Su, Jun, 2015. "Analysis of distributed-generation photovoltaic deployment, installation time and cost, market barriers, and policies in China," Energy Policy, Elsevier, vol. 81(C), pages 43-55.
    5. Pere Mir-Artigues & Pablo del Río, 2014. "Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy," Working Papers 2014/23, Institut d'Economia de Barcelona (IEB).
    6. Passey, Robert & Spooner, Ted & MacGill, Iain & Watt, Muriel & Syngellakis, Katerina, 2011. "The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors," Energy Policy, Elsevier, vol. 39(10), pages 6280-6290, October.
    7. Mailath, George J., 1992. "Introduction: Symposium on evolutionary game theory," Journal of Economic Theory, Elsevier, vol. 57(2), pages 259-277, August.
    8. Shuai, Jing & Cheng, Xin & Ding, Liping & Yang, Jun & Leng, Zhihui, 2019. "How should government and users share the investment costs and benefits of a solar PV power generation project in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 86-94.
    9. Zhang, Yu & Song, Junghyun & Hamori, Shigeyuki, 2011. "Impact of subsidy policies on diffusion of photovoltaic power generation," Energy Policy, Elsevier, vol. 39(4), pages 1958-1964, April.
    10. Kwan, Calvin Lee, 2012. "Influence of local environmental, social, economic and political variables on the spatial distribution of residential solar PV arrays across the United States," Energy Policy, Elsevier, vol. 47(C), pages 332-344.
    11. Shan, Haiyan & Yang, Junliang, 2019. "Sustainability of photovoltaic poverty alleviation in China: An evolutionary game between stakeholders," Energy, Elsevier, vol. 181(C), pages 264-280.
    12. Friedman, Daniel, 1991. "Evolutionary Games in Economics," Econometrica, Econometric Society, vol. 59(3), pages 637-666, May.
    13. repec:hhs:iuiwop:487 is not listed on IDEAS
    14. Kim, Yong-Gwan, 1994. "Evolutionarily stable strategies in the repeated prisoner's dilemma," Mathematical Social Sciences, Elsevier, vol. 28(3), pages 167-197, December.
    15. Zhao, Rui & Zhou, Xiao & Han, Jiaojie & Liu, Chengliang, 2016. "For the sustainable performance of the carbon reduction labeling policies under an evolutionary game simulation," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 262-274.
    16. De Groote, Olivier & Pepermans, Guido & Verboven, Frank, 2016. "Heterogeneity in the adoption of photovoltaic systems in Flanders," Energy Economics, Elsevier, vol. 59(C), pages 45-57.
    17. del Río, Pablo & Cerdá, Emilio, 2014. "The policy implications of the different interpretations of the cost-effectiveness of renewable electricity support," Energy Policy, Elsevier, vol. 64(C), pages 364-372.
    18. Korcaj, Liridon & Hahnel, Ulf J.J. & Spada, Hans, 2015. "Intentions to adopt photovoltaic systems depend on homeowners' expected personal gains and behavior of peers," Renewable Energy, Elsevier, vol. 75(C), pages 407-415.
    19. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    20. Crago, Christine Lasco & Chernyakhovskiy, Ilya, 2017. "Are policy incentives for solar power effective? Evidence from residential installations in the Northeast," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 132-151.
    21. Hirvonen, Janne & Kayo, Genku & Cao, Sunliang & Hasan, Ala & Sirén, Kai, 2015. "Renewable energy production support schemes for residential-scale solar photovoltaic systems in Nordic conditions," Energy Policy, Elsevier, vol. 79(C), pages 72-86.
    22. Parkins, John R. & Rollins, Curtis & Anders, Sven & Comeau, Louise, 2018. "Predicting intention to adopt solar technology in Canada: The role of knowledge, public engagement, and visibility," Energy Policy, Elsevier, vol. 114(C), pages 114-122.
    23. Allen, S.R. & Hammond, G.P. & McManus, M.C., 2008. "Prospects for and barriers to domestic micro-generation: A United Kingdom perspective," Applied Energy, Elsevier, vol. 85(6), pages 528-544, June.
    24. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Liu, G.Q., 2016. "Optimal feed-in tariff for solar photovoltaic power generation in China: A real options analysis," Energy Policy, Elsevier, vol. 97(C), pages 181-192.
    25. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, December.
    26. Tu, Qiang & Mo, Jianlei & Betz, Regina & Cui, Lianbiao & Fan, Ying & Liu, Yu, 2020. "Achieving grid parity of solar PV power in China- The role of Tradable Green Certificate," Energy Policy, Elsevier, vol. 144(C).
    27. Pere Mir-Artigues & Pablo del Río, 2014. "Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy," Working Papers 2014/23, Institut d'Economia de Barcelona (IEB).
    28. Zhao, Xingang & Zeng, Yiping & Zhao, Di, 2015. "Distributed solar photovoltaics in China: Policies and economic performance," Energy, Elsevier, vol. 88(C), pages 572-583.
    29. Tu, Qiang & Betz, Regina & Mo, Jianlei & Fan, Ying, 2019. "The profitability of onshore wind and solar PV power projects in China - A comparative study," Energy Policy, Elsevier, vol. 132(C), pages 404-417.
    30. Mir-Artigues, Pere & del Río, Pablo, 2014. "Combining tariffs, investment subsidies and soft loans in a renewable electricity deployment policy," Energy Policy, Elsevier, vol. 69(C), pages 430-442.
    31. Guo, Xiaodan & Guo, Xiaopeng, 2015. "China's photovoltaic power development under policy incentives: A system dynamics analysis," Energy, Elsevier, vol. 93(P1), pages 589-598.
    32. Liu, Dehai & Xiao, Xingzhi & Li, Hongyi & Wang, Weiguo, 2015. "Historical evolution and benefit–cost explanation of periodical fluctuation in coal mine safety supervision: An evolutionary game analysis framework," European Journal of Operational Research, Elsevier, vol. 243(3), pages 974-984.
    33. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    34. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    35. Balta-Ozkan, Nazmiye & Yildirim, Julide & Connor, Peter M., 2015. "Regional distribution of photovoltaic deployment in the UK and its determinants: A spatial econometric approach," Energy Economics, Elsevier, vol. 51(C), pages 417-429.
    36. Islam, Towhidul & Meade, Nigel, 2013. "The impact of attribute preferences on adoption timing: The case of photo-voltaic (PV) solar cells for household electricity generation," Energy Policy, Elsevier, vol. 55(C), pages 521-530.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shali Wang & Jiaxi Wu & Yunan Peng & Jane Xu & Lisa Leinonen & Yuyu Wang & Zheng Meng, 2022. "Influence of Residential Photovoltaic Promotion Policy on Installation Intention in Typical Regions of China," Sustainability, MDPI, vol. 14(14), pages 1-30, July.
    2. Jie Gao & Qingmei Tan & Bo Cui, 2024. "Reducing Carbon Emissions from Coal-Fired Power Plants: An Analysis Using Evolutionary Game Theory," Sustainability, MDPI, vol. 16(23), pages 1-17, December.
    3. Song, Chenchen & Guo, Zhiling & Liu, Zhengguang & Hongyun, Zhang & Liu, Ran & Zhang, Haoran, 2024. "Application of photovoltaics on different types of land in China: Opportunities, status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Zhou, Dequn & Chong, Zhaotian & Wang, Qunwei, 2020. "What is the future policy for photovoltaic power applications in China? Lessons from the past," Resources Policy, Elsevier, vol. 65(C).
    3. Li, Yunwei & Chen, Kui & Ding, Ruixin & Zhang, Jing & Hao, Yu, 2023. "How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China," Energy Economics, Elsevier, vol. 118(C).
    4. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).
    5. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    6. Sabina Scarpellini & José Ángel Gimeno & Pilar Portillo-Tarragona & Eva Llera-Sastresa, 2021. "Financial Resources for the Investments in Renewable Self-Consumption in a Circular Economy Framework," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    7. Bondio, Steven & Shahnazari, Mahdi & McHugh, Adam, 2018. "The technology of the middle class: Understanding the fulfilment of adoption intentions in Queensland's rapid uptake residential solar photovoltaics market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 642-651.
    8. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    10. Paul Simshauser & Tim Nelson & Joel Gilmore, 2022. "The sunshine state: implications from mass rooftop solar PV take-up rates in Queensland," Working Papers EPRG2219, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Yamashiro, Ririka & Mori, Akihisa, 2023. "Combined third-party ownership and aggregation business model for the adoption of rooftop solar PV–battery systems: Implications from the case of Miyakojima Island, Japan," Energy Policy, Elsevier, vol. 173(C).
    12. Yamamoto, Yoshihiro, 2017. "Feed-in tariffs combined with capital subsidies for promoting the adoption of residential photovoltaic systems," Energy Policy, Elsevier, vol. 111(C), pages 312-320.
    13. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2023. "Neighbourhood-level spatial determinants of residential solar photovoltaic adoption in the Netherlands," Renewable Energy, Elsevier, vol. 206(C), pages 1239-1248.
    14. Bogdan Klepacki & Barbara Kusto & Piotr Bórawski & Aneta Bełdycka-Bórawska & Konrad Michalski & Aleksandra Perkowska & Tomasz Rokicki, 2021. "Investments in Renewable Energy Sources in Basic Units of Local Government in Rural Areas," Energies, MDPI, vol. 14(11), pages 1-17, May.
    15. Zander, Kerstin K., 2020. "Unrealised opportunities for residential solar panels in Australia," Energy Policy, Elsevier, vol. 142(C).
    16. Spyridon Karytsas & Ioannis Vardopoulos & Eleni Theodoropoulou, 2019. "Factors Affecting Sustainable Market Acceptance of Residential Microgeneration Technologies. A Two Time Period Comparative Analysis," Energies, MDPI, vol. 12(17), pages 1-20, August.
    17. Yang, Kun & Wang, Wan & Xiong, Wan, 2021. "Promoting the sustainable development of infrastructure projects through responsible innovation: An evolutionary game analysis," Utilities Policy, Elsevier, vol. 70(C).
    18. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    19. Best, Rohan & Chareunsy, Andrea, 2022. "The impact of income on household solar panel uptake: Exploring diverse results using Australian data," Energy Economics, Elsevier, vol. 112(C).
    20. Esplin, Ryan & Nelson, Tim, 2022. "Redirecting solar feed in tariffs to residential battery storage: Would it be worth it?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 373-389.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:2:d:10.1007_s11027-021-09977-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.