IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v35y2024i7p3575-3599.html
   My bibliography  Save this article

Performance prediction of a clean coal power plant via machine learning and deep learning techniques

Author

Listed:
  • Mariana Haddadin
  • Omar Mohamed
  • Wejdan Abu Elhaija
  • Mustafa Matar

Abstract

Computer simulation of energy resources has led to significant achievements in the interdisciplinary fields of energy and environment. Apart from renewable resources, fossil-fuel power generation plants can be made cleaner to satisfy the future climate targets while keeping secure and stable grid. Clean coal power plants are still among the dominant options for power generation, which are committed through energy-efficient operation, carbon capture and storage, or combination of both strategies. On the other hand, machine learning and deep learning techniques have a leading integrity in the field of simulation. This paper presents accurate models of a cleaner coal-fired supercritical (SC) unit using two types of artificial neural network, which are Elman neural network (ENN) and generalized regression neural network (GRNN). The models newly embed higher coverage range and more accurate results than previously published models. Each subsystem of the models has been structured as a multi-input single-output (MISO) component to predict the behavior of significant variables in the plant, mainly the supercritical pressure in MPa, the steam temperature in °C and the production in MW. Those variables have been intentionally selected as they are clear indicators for the energy-efficient and cleaner production. Simulation results of four sets of data have indicated satisfactory performance of both models with a bit higher superiority of the GRNN that has given negligible or zero Mean Squared Error (MSE) for all outputs, whereas the minimum MSE of the deep ENN is 3.131  ×  10 −3 .

Suggested Citation

  • Mariana Haddadin & Omar Mohamed & Wejdan Abu Elhaija & Mustafa Matar, 2024. "Performance prediction of a clean coal power plant via machine learning and deep learning techniques," Energy & Environment, , vol. 35(7), pages 3575-3599, November.
  • Handle: RePEc:sae:engenv:v:35:y:2024:i:7:p:3575-3599
    DOI: 10.1177/0958305X231160590
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X231160590
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X231160590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Qasem & Omar Mohamed & Wejdan Abu Elhaija, 2022. "Parameter Identification and Sliding Pressure Control of a Supercritical Power Plant Using Whale Optimizer," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    2. Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.
    3. Shi, Yan & Zhong, Wenqi & Chen, Xi & Yu, A.B. & Li, Jie, 2019. "Combustion optimization of ultra supercritical boiler based on artificial intelligence," Energy, Elsevier, vol. 170(C), pages 804-817.
    4. Al-Momani, Ahmad & Mohamed, Omar & Abu Elhaija, Wejdan, 2022. "Multiple processes modeling and identification for a cleaner supercritical power plant via Grey Wolf Optimizer," Energy, Elsevier, vol. 252(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, You & Lv, Xuguang & Fang, Fang & Yang, Tingting & Romero, Carlos E., 2020. "Adaptive selective catalytic reduction model development using typical operating data in coal-fired power plants," Energy, Elsevier, vol. 192(C).
    2. Zhu, Yukun & Yu, Cong & Fan, Wei & Yu, Haiquan & Jin, Wei & Chen, Shuo & Liu, Xia, 2023. "A novel NOx emission prediction model for multimodal operational utility boilers considering local features and prior knowledge," Energy, Elsevier, vol. 280(C).
    3. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    4. Wu, Chunying & Sun, Lingfang & Piao, Heng & Yao, Lijia, 2024. "Adaptive fuzzy finite time integral sliding mode control of the coordinated system for 350 MW supercritical once-through boiler unit to enhance flexibility," Energy, Elsevier, vol. 302(C).
    5. Rossi, Francesco & Velázquez, David, 2015. "A methodology for energy savings verification in industry with application for a CHP (combined heat and power) plant," Energy, Elsevier, vol. 89(C), pages 528-544.
    6. Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
    7. Liukkonen, M. & Heikkinen, M. & Hiltunen, T. & Hälikkä, E. & Kuivalainen, R. & Hiltunen, Y., 2011. "Artificial neural networks for analysis of process states in fluidized bed combustion," Energy, Elsevier, vol. 36(1), pages 339-347.
    8. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    9. Xue, Wenyuan & Lu, Yichen & Wang, Zhi & Cao, Shengxian & Sui, Mengxuan & Yang, Yuan & Li, Jiyuan & Xie, Yubin, 2024. "Reconstructing near-water-wall temperature in coal-fired boilers using improved transfer learning and hidden layer configuration optimization," Energy, Elsevier, vol. 294(C).
    10. Zhou, Jian & Zhang, Wei, 2023. "Coal consumption prediction in thermal power units: A feature construction and selection method," Energy, Elsevier, vol. 273(C).
    11. Wang, Kai & Li, Kangnan & Du, Feng & Zhang, Xiang & Wang, Yanhai & Sun, Jiazhi, 2024. "Research on prediction model of coal spontaneous combustion temperature based on SSA-CNN," Energy, Elsevier, vol. 290(C).
    12. Nikpey, H. & Assadi, M. & Breuhaus, P., 2013. "Development of an optimized artificial neural network model for combined heat and power micro gas turbines," Applied Energy, Elsevier, vol. 108(C), pages 137-148.
    13. Bo Zhu & Bichen Shang & Xiao Guo & Chao Wu & Xiaoqiang Chen & Lingling Zhao, 2022. "Study on Combustion Characteristics and NOx Formation in 600 MW Coal-Fired Boiler Based on Numerical Simulation," Energies, MDPI, vol. 16(1), pages 1-30, December.
    14. Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
    15. Li, Zhenghui & Yao, Shunchun & Chen, Da & Li, Longqian & Lu, Zhimin & Liu, Wen & Yu, Zhuliang, 2024. "Multi-parameter co-optimization for NOx emissions control from waste incinerators based on data-driven model and improved particle swarm optimization," Energy, Elsevier, vol. 306(C).
    16. Li, Shicheng & Ma, Suxia & Wang, Fang, 2023. "A combined NOx emission prediction model based on semi-empirical model and black box models," Energy, Elsevier, vol. 264(C).
    17. Halil Akbaş & Gültekin Özdemir, 2020. "An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components," Energies, MDPI, vol. 13(22), pages 1-29, November.
    18. Nikpey, H. & Assadi, M. & Breuhaus, P. & Mørkved, P.T., 2014. "Experimental evaluation and ANN modeling of a recuperative micro gas turbine burning mixtures of natural gas and biogas," Applied Energy, Elsevier, vol. 117(C), pages 30-41.
    19. Rostek, Kornel & Morytko, Łukasz & Jankowska, Anna, 2015. "Early detection and prediction of leaks in fluidized-bed boilers using artificial neural networks," Energy, Elsevier, vol. 89(C), pages 914-923.
    20. Vo, Nguyen Dat & Oh, Dong Hoon & Kang, Jun-Ho & Oh, Min & Lee, Chang-Ha, 2020. "Dynamic-model-based artificial neural network for H2 recovery and CO2 capture from hydrogen tail gas," Applied Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:35:y:2024:i:7:p:3575-3599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.