IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7127-d835737.html
   My bibliography  Save this article

Analytical Solution of the Mixed Traffic Flow Cellular Automaton FI Model with the Next-Nearest-Neighbor Interaction

Author

Listed:
  • Yanxin Zhang

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China)

  • Yu Xue

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China
    Guangxi Key Lab Relativist Astrophys, Nanning 530004, China)

  • Yanfeng Qiao

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China)

  • Bingling Cen

    (Institute of Physical Science and Technology, Guangxi University, Nanning 530004, China)

Abstract

Based on a one-dimensional (1D) traffic flow cellular automaton (CA) FI model, a deterministic next-nearest-neighbor interaction FI model (NIFI model) is proposed. Using the mean-field analysis, the analytical solution of the NIFI model in one-dimensional traffic flow is derived under periodic boundary conditions. For the mixed traffic flow, the occupancy and the mixing ratio are introduced to describe the mixing effect. Similarly, using the mean-field method, the exact solution of the mixed traffic flow is derived from the long-time evolution to reach the steady state. The numerical simulations are carried out for the mixed traffic flow with different vehicle lengths, maximum velocities, and mixing ratios to verify the analytical solutions. The results show that the numerical simulation results agree well with the analytical solution.

Suggested Citation

  • Yanxin Zhang & Yu Xue & Yanfeng Qiao & Bingling Cen, 2022. "Analytical Solution of the Mixed Traffic Flow Cellular Automaton FI Model with the Next-Nearest-Neighbor Interaction," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7127-:d:835737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiao, Yan-feng & Xue, Yu & Wang, Xue & Cen, Bing-ling & Wang, Yi & Pan, Wei & Zhang, Yan-xin, 2021. "Investigation of PM emissions in cellular automata model with slow-to-start effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    2. Wang, Xue & Xue, Yu & Cen, Bing-ling & Zhang, Peng & He, Hong-di, 2020. "Study on pollutant emissions of mixed traffic flow in cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Chowdhury, Debashish & Wolf, Dietrich E. & Schreckenberg, Michael, 1997. "Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 235(3), pages 417-439.
    4. Knospe, Wolfgang & Santen, Ludger & Schadschneider, Andreas & Schreckenberg, Michael, 1999. "Disorder effects in cellular automata for two-lane traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(3), pages 614-633.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue Wang & Yu Xue & Suwei Feng, 2023. "Traffic fuel consumption evaluation of the on-ramp with acceleration lane based on cellular automata," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-11, June.
    2. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    3. Qiao, Yanfeng & Xue, Yu & Cen, Bingling & Zhang, Kun & Chen, Dong & Pan, Wei, 2024. "Study on particulate emission in two-lane mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    4. Harris, R.J. & Stinchcombe, R.B., 2005. "Ideal and disordered two-lane traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 582-596.
    5. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming & Ma, Jian, 2013. "Modelling of lane-changing behaviour integrating with merging effect before a city road bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5143-5153.
    6. Mu, Rui & Yamamoto, Toshiyuki, 2019. "Analysis of traffic flow with micro-cars with respect to safety and environmental impact," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 217-241.
    7. Kuang, Xianyan & Chen, Ziru, 2022. "Trajectory research of Cellular Automaton Model based on real driving behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    8. Yang, Liu & Zheng, Jianlong & Cheng, Yang & Ran, Bin, 2019. "An asymmetric cellular automata model for heterogeneous traffic flow on freeways with a climbing lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Dingxin Wu & Wei Deng & Yan Song & Jian Wang & Dewen Kong, 2017. "Evaluating Operational Effects of Bus Lane with Intermittent Priority under Connected Vehicle Environments," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-13, April.
    10. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    11. Yang, Haifei & Lu, Jian & Hu, Xiaojian & Jiang, Jun, 2013. "A cellular automaton model based on empirical observations of a driver’s oscillation behavior reproducing the findings from Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4009-4018.
    12. Laval, Jorge A. & Daganzo, Carlos F., 2004. "Multi-Lane Hybrid Traffic Flow Model: Quantifying the Impacts of Lane-Changing Maneuvers on Traffic Flow," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8w70q261, Institute of Transportation Studies, UC Berkeley.
    13. Marzoug, R. & Lakouari, N. & Ez-Zahraouy, H. & Castillo Téllez, B. & Castillo Téllez, M. & Cisneros Villalobos, L., 2022. "Modeling and simulation of car accidents at a signalized intersection using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    14. Li, Huamin & Zhang, Shun, 2022. "Lane change behavior with uncertainty and fuzziness for human driving vehicles and its simulation in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    15. Li, Xiang & Sun, Jian-Qiao, 2015. "Studies of vehicle lane-changing to avoid pedestrians with cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 251-271.
    16. Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
    17. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    18. Rachid Marzoug & Noureddine Lakouari & José Roberto Pérez Cruz & Carlos Jesahel Vega Gómez, 2022. "Cellular Automata Model for Analysis and Optimization of Traffic Emission at Signalized Intersection," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    19. Mohammad Maghrour Zefreh & Adam Torok, 2021. "Theoretical Comparison of the Effects of Different Traffic Conditions on Urban Road Environmental External Costs," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    20. Wei Pan & Xiaolu Chen & Xiaojun Duan, 2022. "Energy dissipation and particulate emission at traffic bottleneck based on NaSch model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(7), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7127-:d:835737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.