IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v354y2005icp582-596.html
   My bibliography  Save this article

Ideal and disordered two-lane traffic models

Author

Listed:
  • Harris, R.J.
  • Stinchcombe, R.B.

Abstract

We introduce a simple lattice-based exclusion model which can be considered as a crude representation of traffic on a two-lane motorway. The model is a two-lane generalization of the asymmetric simple exclusion process which is known to reproduce some of the features of single-lane traffic such as shocks and jams. A mean-field analysis for the steady state of the pure two-lane system is supported by Monte Carlo simulations. We then discuss the effect of quenched bond disorder on the current–density relation and draw comparisons with the disordered single-lane case.

Suggested Citation

  • Harris, R.J. & Stinchcombe, R.B., 2005. "Ideal and disordered two-lane traffic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 582-596.
  • Handle: RePEc:eee:phsmap:v:354:y:2005:i:c:p:582-596
    DOI: 10.1016/j.physa.2005.02.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105001883
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.02.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fukui, Minoru & Nishinari, Katsuhiro & Takahashi, Daisuke & Ishibashi, Yoshihiro, 2002. "Metastable flows in a two-lane traffic model equivalent to extended Burgers cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 303(1), pages 226-238.
    2. Knospe, Wolfgang & Santen, Ludger & Schadschneider, Andreas & Schreckenberg, Michael, 1999. "Disorder effects in cellular automata for two-lane traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 265(3), pages 614-633.
    3. Chowdhury, Debashish & Wolf, Dietrich E. & Schreckenberg, Michael, 1997. "Particle hopping models for two-lane traffic with two kinds of vehicles: Effects of lane-changing rules," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 235(3), pages 417-439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lv, Wei & Song, Wei-guo & Fang, Zhi-ming & Ma, Jian, 2013. "Modelling of lane-changing behaviour integrating with merging effect before a city road bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5143-5153.
    2. Mu, Rui & Yamamoto, Toshiyuki, 2019. "Analysis of traffic flow with micro-cars with respect to safety and environmental impact," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 217-241.
    3. Yanxin Zhang & Yu Xue & Yanfeng Qiao & Bingling Cen, 2022. "Analytical Solution of the Mixed Traffic Flow Cellular Automaton FI Model with the Next-Nearest-Neighbor Interaction," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    4. Kuang, Xianyan & Chen, Ziru, 2022. "Trajectory research of Cellular Automaton Model based on real driving behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    5. Yang, Liu & Zheng, Jianlong & Cheng, Yang & Ran, Bin, 2019. "An asymmetric cellular automata model for heterogeneous traffic flow on freeways with a climbing lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Dingxin Wu & Wei Deng & Yan Song & Jian Wang & Dewen Kong, 2017. "Evaluating Operational Effects of Bus Lane with Intermittent Priority under Connected Vehicle Environments," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-13, April.
    7. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui, 2020. "Two-lane traffic flow model based on regular hexagonal cells with realistic lane changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    8. Xue Wang & Yu Xue & Suwei Feng, 2023. "Traffic fuel consumption evaluation of the on-ramp with acceleration lane based on cellular automata," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-11, June.
    9. Yang, Haifei & Lu, Jian & Hu, Xiaojian & Jiang, Jun, 2013. "A cellular automaton model based on empirical observations of a driver’s oscillation behavior reproducing the findings from Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4009-4018.
    10. Laval, Jorge A. & Daganzo, Carlos F., 2004. "Multi-Lane Hybrid Traffic Flow Model: Quantifying the Impacts of Lane-Changing Maneuvers on Traffic Flow," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt8w70q261, Institute of Transportation Studies, UC Berkeley.
    11. Marzoug, R. & Lakouari, N. & Ez-Zahraouy, H. & Castillo Téllez, B. & Castillo Téllez, M. & Cisneros Villalobos, L., 2022. "Modeling and simulation of car accidents at a signalized intersection using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    12. Li, Huamin & Zhang, Shun, 2022. "Lane change behavior with uncertainty and fuzziness for human driving vehicles and its simulation in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    13. Xue, Shuqi & Jia, Bin & Jiang, Rui & Li, Xingang & Shan, Jingjing, 2017. "An improved Burgers cellular automaton model for bicycle flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 164-177.
    14. Li, Xiang & Sun, Jian-Qiao, 2015. "Studies of vehicle lane-changing to avoid pedestrians with cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 251-271.
    15. Feng, Shumin & Li, Jinyang & Ding, Ning & Nie, Cen, 2015. "Traffic paradox on a road segment based on a cellular automaton: Impact of lane-changing behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 90-102.
    16. Li, Xin & Li, Xingang & Xiao, Yao & Jia, Bin, 2016. "Modeling mechanical restriction differences between car and heavy truck in two-lane cellular automata traffic flow model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 49-62.
    17. Rachid Marzoug & Noureddine Lakouari & José Roberto Pérez Cruz & Carlos Jesahel Vega Gómez, 2022. "Cellular Automata Model for Analysis and Optimization of Traffic Emission at Signalized Intersection," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    18. Wei Pan & Xiaolu Chen & Xiaojun Duan, 2022. "Energy dissipation and particulate emission at traffic bottleneck based on NaSch model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(7), pages 1-13, July.
    19. Ma, Changxi & Li, Dong, 2023. "A review of vehicle lane change research," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    20. Fu, Ding-Jun & Zhang, Cun-Bao & Liu, Jun & Li, Tao & Li, Qi-Lang, 2024. "Research of the left-turn vehicles lane-changing behaviors at signalized intersections with contraflow lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:354:y:2005:i:c:p:582-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.