IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3541-d522251.html
   My bibliography  Save this article

Theoretical Comparison of the Effects of Different Traffic Conditions on Urban Road Environmental External Costs

Author

Listed:
  • Mohammad Maghrour Zefreh

    (Department of Transport Technology and Economics, Budapest University of Technology and Economics, 1111 Budapest, Hungary)

  • Adam Torok

    (Department of Transport Technology and Economics, Budapest University of Technology and Economics, 1111 Budapest, Hungary
    KTI-Institute for Transport Sciences, 1119 Budapest, Hungary)

Abstract

External costs that are associated with air pollution, climate change linked to greenhouse gas emissions (GHG), and noise are among the most important environmental externalities that are generated by road transport, which have been well monetized. This paper theoretically investigates the effects of different traffic conditions on the environmental external costs of urban roads where traffic flow is more complicated than un-interrupted traffic flows. A Monte Carlo method is used to theoretically simulate traffic speed in different traffic conditions. Subsequently, the emitted carbon dioxide ( C O 2 ), nitrogen oxides ( N O x ), carbon monoxide ( C O ), particulate matter ( P M ), sulfur dioxide ( S O 2 ), and noise were estimated in each of the theoretically simulated traffic conditions. Finally, the environmental external costs in each traffic condition were calculated taking the EU average costs values into account. The results showed that, when compared to free-flow condition, the total air pollutant and GHG external costs (€2010) have been increased by 6%, 31%, 44%, 50%, and 93% in under-saturated flow, accelerated flow, decelerated flow, congestion, and over-saturated congestion, respectively. Furthermore, the total noise cost (€2010/year/person exposed), as compared to free-flow condition, has been decreased by 2%, 11%, 12%, 36%, and 69% in accelerated flow, under-saturated flow, congestion, over-saturated congestion, and decelerated flow, respectively.

Suggested Citation

  • Mohammad Maghrour Zefreh & Adam Torok, 2021. "Theoretical Comparison of the Effects of Different Traffic Conditions on Urban Road Environmental External Costs," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3541-:d:522251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3541/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3541/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cárdenas Rodríguez, Miguel & Dupont-Courtade, Laura & Oueslati, Walid, 2016. "Air pollution and urban structure linkages: Evidence from European cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1-9.
    2. von Graevenitz, Kathrine, 2018. "The amenity cost of road noise," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 1-22.
    3. Hu, Yujie & Wang, Fahui, 2015. "Decomposing excess commuting: a Monte Carlo simulation approach," Journal of Transport Geography, Elsevier, vol. 44(C), pages 43-52.
    4. Lo, Pak Lam & Martini, Gianmaria & Porta, Flavio & Scotti, Davide, 2020. "The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy)," Transport Policy, Elsevier, vol. 91(C), pages 108-119.
    5. Yang, Mian & Ma, Tiemeng & Sun, Chuanwang, 2018. "Evaluating the impact of urban traffic investment on SO2 emissions in China cities," Energy Policy, Elsevier, vol. 113(C), pages 20-27.
    6. Wang, Xue & Xue, Yu & Cen, Bing-ling & Zhang, Peng & He, Hong-di, 2020. "Study on pollutant emissions of mixed traffic flow in cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    7. Nan Zhong & Jing Cao & Yuzhu Wang, 2017. "Traffic Congestion, Ambient Air Pollution, and Health: Evidence from Driving Restrictions in Beijing," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(3), pages 821-856.
    8. Jochem, Patrick & Doll, Claus & Fichtner, Wolf, 2016. "External costs of electric vehicles," MPRA Paper 91602, University Library of Munich, Germany.
    9. Lin, Boqiang & Xu, Mengmeng, 2018. "Regional differences on CO2 emission efficiency in metallurgical industry of China," Energy Policy, Elsevier, vol. 120(C), pages 302-311.
    10. Andersson, Fredrik N.G. & Opper, Sonja & Khalid, Usman, 2018. "Are capitalists green? Firm ownership and provincial CO2 emissions in China," Energy Policy, Elsevier, vol. 123(C), pages 349-359.
    11. Santos, Georgina, 2017. "Road fuel taxes in Europe: Do they internalize road transport externalities?," Transport Policy, Elsevier, vol. 53(C), pages 120-134.
    12. Santos, Georgina & Behrendt, Hannah & Maconi, Laura & Shirvani, Tara & Teytelboym, Alexander, 2010. "Part I: Externalities and economic policies in road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 2-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pires Abdullah & Tibor Sipos, 2022. "Drivers’ Behavior and Traffic Accident Analysis Using Decision Tree Method," Sustainability, MDPI, vol. 14(18), pages 1-11, September.
    2. Ioana C. Sechel & Florin Mariasiu, 2021. "Efficiency of Governmental Policy and Programs to Stimulate the Use of Low-Emission and Electric Vehicles: The Case of Romania," Sustainability, MDPI, vol. 14(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mustapha Mukhtar & Sandra Obiora & Nasser Yimen & Zhang Quixin & Olusola Bamisile & Pauline Jidele & Young I. Irivboje, 2021. "Effect of Inadequate Electrification on Nigeria’s Economic Development and Environmental Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    2. Ana María Peco Chacón & Isaac Segovia Ramírez & Fausto Pedro García Márquez, 2020. "False Alarms Analysis of Wind Turbine Bearing System," Sustainability, MDPI, vol. 12(19), pages 1-11, September.
    3. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    4. Mohamed Ali Kammoun & Sadok Turki & Nidhal Rezg, 2020. "Optimization of Flight Rescheduling Problem under Carbon Tax," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    5. Khandaker Rasel Hasan & Wei Zhang & Wenming Shi, 2021. "Barriers to intermodal freight diversion: a total logistics cost approach," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(3), pages 569-586, September.
    6. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
    7. Erfan Ghorbani & Mahdi Alinaghian & Gevork. B. Gharehpetian & Sajad Mohammadi & Guido Perboli, 2020. "A Survey on Environmentally Friendly Vehicle Routing Problem and a Proposal of Its Classification," Sustainability, MDPI, vol. 12(21), pages 1-71, October.
    8. Xu Chen & Guangdi Hu & Feng Guo & Mengqi Ye & Jingyuan Huang, 2020. "Switched Energy Management Strategy for Fuel Cell Hybrid Vehicle Based on Switch Network," Energies, MDPI, vol. 13(1), pages 1-23, January.
    9. Santos, Georgina, 2017. "Road transport and CO2 emissions: What are the challenges?," Transport Policy, Elsevier, vol. 59(C), pages 71-74.
    10. Suprava Chakraborty & Nallapaneni Manoj Kumar & Arunkumar Jayakumar & Santanu Kumar Dash & Devaraj Elangovan, 2021. "Selected Aspects of Sustainable Mobility Reveals Implementable Approaches and Conceivable Actions," Sustainability, MDPI, vol. 13(22), pages 1-31, November.
    11. Hausman, Catherine & Stolper, Samuel, 2021. "Inequality, information failures, and air pollution," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    12. Sankaralingam, Ravikumar & Sengottuvelan, Balasubramanian & Venkat, Pranesh & Selvaraj, Mahalingam & Arunachalam, Velmurugan & Natarajan, Jeyakumaran, 2020. "Experimental investigation on varying flame characteristics of benzoic resin solid fuel pellets," Renewable Energy, Elsevier, vol. 147(P1), pages 1500-1510.
    13. Börjesson, Maria & Asplund, Disa & Hamilton, Carl, 2021. "Optimal kilometre tax for electric passenger cars," Working Papers 2021:3, Swedish National Road & Transport Research Institute (VTI).
    14. Gkoumas, Konstantinos & van Balen, Mitchell & Tsakalidis, Anastasios & Pekar, Ferenc, 2022. "Evaluating the development of transport technologies in European research and innovation projects between 2007 and 2020," Research in Transportation Economics, Elsevier, vol. 92(C).
    15. Xue Wang & Yu Xue & Suwei Feng, 2023. "Traffic fuel consumption evaluation of the on-ramp with acceleration lane based on cellular automata," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(6), pages 1-11, June.
    16. Andrea Baranzini & Stefano Carattini & Linda Tesauro, 2021. "Designing Effective and Acceptable Road Pricing Schemes: Evidence from the Geneva Congestion Charge," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(3), pages 417-482, July.
    17. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    18. Bénédicte Meurisse, 2015. "On the relevance of differentiated car purchase taxes in light of the rebound effect," Working Papers 1512, Chaire Economie du climat.
    19. Li, Kunming & Fang, Liting & He, Lerong, 2019. "How population and energy price affect China's environmental pollution?," Energy Policy, Elsevier, vol. 129(C), pages 386-396.
    20. Nilsson , Jan-Eric Nilsson & Isacsson , Gunnar & Haraldsson, Mattias & Nerhagen, Lena & Odolinski, Kristofer & Swärdh, Jan-Erik & Vierth, Inge & Yarmukhamedov, Sherzod & Österström, Johannes, 2018. "The efficient use of infrastructure – is Sweden pricing traffic on its roads, railways, waters and airways at marginal costs?," Working papers in Transport Economics 2018:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3541-:d:522251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.