IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6700-d827998.html
   My bibliography  Save this article

Screening Risk Assessment at the Production and Use Stage of Carbon Nanomaterials Generated in Hydrogen Manufacture by Methane Decomposition

Author

Listed:
  • Kiyotaka Tsunemi

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8569, Japan)

  • Madoka Yoshida

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8569, Japan)

  • Akemi Kawamoto

    (Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8569, Japan)

Abstract

We performed a screening evaluation of the human health risk posed by nanocarbon materials at the lifecycle stages of manufacturing and the use of the solid carbon generated in hydrogen manufacture by methane decomposition. We first estimated the atmospheric emission volumes of the solid carbon produced by small-, medium-, and large-scale hydrogen manufacturing plants. We then estimated the atmospheric emission due to tire wear, which largely contributes to the emission of solid carbon usage. Next, we estimated the atmospheric concentration of solid carbon in an atmospheric simulation using the METI–LIS model, which estimates the atmospheric distribution of a pollutant’s concentration near methane decomposition factories. We also used the AIST–ADMER model that estimated the regional atmospheric distributions around central Tokyo, where the traffic volume is the highest nationally. Finally, we performed a screening evaluation of human health risk in the surrounding areas, considering the permissible exposure concentrations of solid carbon. Our study identified no risk concerns at small- and medium-scale factory locations equipped with high-efficiency particulate air (HEPA) filtration facilities. At large-scale factories installed with HEPA filters, these emissions likely remain within the factory site. Furthermore, we determined that emissions from tire wear pose no risk to human health. The surroundings of small- and medium-scale factory sites installed with HEPA filters posed no risk to human health.

Suggested Citation

  • Kiyotaka Tsunemi & Madoka Yoshida & Akemi Kawamoto, 2022. "Screening Risk Assessment at the Production and Use Stage of Carbon Nanomaterials Generated in Hydrogen Manufacture by Methane Decomposition," Sustainability, MDPI, vol. 14(11), pages 1-12, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6700-:d:827998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Binh Nguyen Thi Lan & Takeshi Kobayashi & Atsushi Suetsugu & Xiaowei Tian & Takashi Kameya, 2018. "Estimating the Possibility of Surface Soil Pollution with Atmospheric Lead Deposits Using the ADMER Model," Sustainability, MDPI, vol. 10(3), pages 1-12, March.
    2. Abánades, A. & Rubbia, C. & Salmieri, D., 2012. "Technological challenges for industrial development of hydrogen production based on methane cracking," Energy, Elsevier, vol. 46(1), pages 359-363.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bermúdez, Vicente & Luján, José Manuel & Piqueras, Pedro & Campos, Daniel, 2014. "Pollutants emission and particle behavior in a pre-turbo aftertreatment light-duty diesel engine," Energy, Elsevier, vol. 66(C), pages 509-522.
    2. Burak Atakan, 2019. "Compression–Expansion Processes for Chemical Energy Storage: Thermodynamic Optimization for Methane, Ethane and Hydrogen," Energies, MDPI, vol. 12(17), pages 1-21, August.
    3. Zhang, Xiang & Kätelhön, Arne & Sorda, Giovanni & Helmin, Marta & Rose, Marcus & Bardow, André & Madlener, Reinhard & Palkovits, Regina & Mitsos, Alexander, 2018. "CO2 mitigation costs of catalytic methane decomposition," Energy, Elsevier, vol. 151(C), pages 826-838.
    4. Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
    5. Keipi, Tiina & Li, Tian & Løvås, Terese & Tolvanen, Henrik & Konttinen, Jukka, 2017. "Methane thermal decomposition in regenerative heat exchanger reactor: Experimental and modeling study," Energy, Elsevier, vol. 135(C), pages 823-832.
    6. Aleknaviciute, I. & Karayiannis, T.G. & Collins, M.W. & Xanthos, C., 2013. "Methane decomposition under a corona discharge to generate COx-free hydrogen," Energy, Elsevier, vol. 59(C), pages 432-439.
    7. Mboowa, Drake & Quereshi, Shireen & Bhattacharjee, Chiranjit & Tonny, Kukeera & Dutta, Suman, 2017. "Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India)," Energy, Elsevier, vol. 123(C), pages 386-391.
    8. Wachter, Philipp & Gaber, Christian & Demuth, Martin & Hochenauer, Christoph, 2020. "Experimental investigation of tri-reforming on a stationary, recuperative TCR-reformer applied to an oxy-fuel combustion of natural gas, using a Ni-catalyst," Energy, Elsevier, vol. 212(C).
    9. Msheik, Malek & Rodat, Sylvain & Abanades, Stéphane, 2022. "Experimental comparison of solar methane pyrolysis in gas-phase and molten-tin bubbling tubular reactors," Energy, Elsevier, vol. 260(C).
    10. Ozalp, Nesrin & Ibrik, Karim & Al-Meer, Mariam, 2013. "Kinetics and heat transfer analysis of carbon catalyzed solar cracking process," Energy, Elsevier, vol. 55(C), pages 74-81.
    11. Ozalp, N. & Abedini, H. & Abuseada, M. & Davis, R. & Rutten, J. & Verschoren, J. & Ophoff, C. & Moens, D., 2022. "An overview of direct carbon fuel cells and their promising potential on coupling with solar thermochemical carbon production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Malek Msheik & Sylvain Rodat & Stéphane Abanades, 2021. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis," Energies, MDPI, vol. 14(11), pages 1-35, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6700-:d:827998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.