IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6299-d821029.html
   My bibliography  Save this article

Assessment of the Impact of Using a Smart Thermostat and Smart Meter Data on a Whole-Building Energy Simulation

Author

Listed:
  • Sukjoon Oh

    (Department of Building Research, Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Korea)

  • Juan-Carlos Baltazar

    (Energy Systems Laboratory, Texas A&M Engineering Experiment Station, Bryan, TX 77807, USA
    Department of Architecture, Texas A&M University, College Station, TX 77843, USA)

  • Jeff S. Haberl

    (Energy Systems Laboratory, Texas A&M Engineering Experiment Station, Bryan, TX 77807, USA
    Department of Architecture, Texas A&M University, College Station, TX 77843, USA)

Abstract

Building energy simulation models have been used to assist the design and/or optimization of buildings energy performance. The results from building energy simulation models can be more reliable when measured energy use data, indoor environmental condition data, system operation status, and coincident weather data are used to validate the simulation results. In this paper, given the wide-spread use of home automation devices in residential buildings, we studied how well a residential building energy simulation model can be tuned using measured interval data from a smart thermostat and smart meter. The analysis is based on a multi-stage approach that can help improve the reliability of the use of building energy simulation models that reflect both the indoor air temperature and whole-building energy use. Results from changing the input parameters in the building simulation show that the comparison of the simulated and measured indoor temperatures fall in a range below a NMBE of 1.5% and a CV-RMSE of 2.2%, while the simulated whole-building energy use matches the measured energy use below a NMBE of −2.7% and a CV-RMSE of 10.9%. We found that the most significant parameters for the indoor air temperature and whole-building energy use were the effective U-value for the slab-on-grade floor and the heating and cooling system operation status, respectively.

Suggested Citation

  • Sukjoon Oh & Juan-Carlos Baltazar & Jeff S. Haberl, 2022. "Assessment of the Impact of Using a Smart Thermostat and Smart Meter Data on a Whole-Building Energy Simulation," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6299-:d:821029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Germán Ramos Ruiz & Carlos Fernández Bandera, 2017. "Validation of Calibrated Energy Models: Common Errors," Energies, MDPI, vol. 10(10), pages 1-19, October.
    2. Mustafaraj, Giorgio & Marini, Dashamir & Costa, Andrea & Keane, Marcus, 2014. "Model calibration for building energy efficiency simulation," Applied Energy, Elsevier, vol. 130(C), pages 72-85.
    3. Enrico Fabrizio & Valentina Monetti, 2015. "Methodologies and Advancements in the Calibration of Building Energy Models," Energies, MDPI, vol. 8(4), pages 1-27, March.
    4. Israel Torres Pineda & Jeong Hwa Cho & Dongkeun Lee & Sang Min Lee & Sangseok Yu & Young Duk Lee, 2020. "Environmental Impact of Fresh Tomato Production in an Urban Rooftop Greenhouse in a Humid Continental Climate in South Korea," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sukjoon Oh & John F. Gardner, 2022. "Energy Consumption Analysis Using Measured Data from a Net-Zero Energy Commercial Building in a Cold and Dry Climate," Sustainability, MDPI, vol. 14(16), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suzana Domjan & Sašo Medved & Boštjan Černe & Ciril Arkar, 2019. "Fast Modelling of nZEB Metrics of Office Buildings Built with Advanced Glass and BIPV Facade Structures," Energies, MDPI, vol. 12(16), pages 1-18, August.
    2. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    3. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Carlos Fernández Bandera & Germán Ramos Ruiz, 2017. "Towards a New Generation of Building Envelope Calibration," Energies, MDPI, vol. 10(12), pages 1-19, December.
    5. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    6. Calama-González, Carmen María & Symonds, Phil & Petrou, Giorgos & Suárez, Rafael & León-Rodríguez, Ángel Luis, 2021. "Bayesian calibration of building energy models for uncertainty analysis through test cells monitoring," Applied Energy, Elsevier, vol. 282(PA).
    7. Yang, Tao & Pan, Yiqun & Mao, Jiachen & Wang, Yonglong & Huang, Zhizhong, 2016. "An automated optimization method for calibrating building energy simulation models with measured data: Orientation and a case study," Applied Energy, Elsevier, vol. 179(C), pages 1220-1231.
    8. O' Donovan, Adam & O' Sullivan, Paul D. & Murphy, Michael D., 2019. "Predicting air temperatures in a naturally ventilated nearly zero energy building: Calibration, validation, analysis and approaches," Applied Energy, Elsevier, vol. 250(C), pages 991-1010.
    9. Arkar, C. & Žižak, T. & Domjan, S. & Medved, S., 2020. "Dynamic parametric models for the holistic evaluation of semi-transparent photovoltaic/thermal façade with latent storage inserts," Applied Energy, Elsevier, vol. 280(C).
    10. Žižak, Tej & Domjan, Suzana & Medved, Sašo & Arkar, Ciril, 2022. "Efficiency and sustainability assessment of evaporative cooling of photovoltaics," Energy, Elsevier, vol. 254(PA).
    11. Martín Pensado-Mariño & Lara Febrero-Garrido & Pablo Eguía-Oller & Enrique Granada-Álvarez, 2021. "Feasibility of Different Weather Data Sources Applied to Building Indoor Temperature Estimation Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    12. Abdelhakim Mesloub & Aritra Ghosh & Mabrouk Touahmia & Ghazy Abdullah Albaqawy & Emad Noaime & Badr M. Alsolami, 2020. "Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate," Sustainability, MDPI, vol. 12(23), pages 1-17, December.
    13. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    14. Solène Goy & François Maréchal & Donal Finn, 2020. "Data for Urban Scale Building Energy Modelling: Assessing Impacts and Overcoming Availability Challenges," Energies, MDPI, vol. 13(16), pages 1-23, August.
    15. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    16. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    17. Nutkiewicz, Alex & Yang, Zheng & Jain, Rishee K., 2018. "Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow," Applied Energy, Elsevier, vol. 225(C), pages 1176-1189.
    18. Ahmed, Omar & Sezer, Nurettin & Ouf, Mohamed & Wang, Liangzhu (Leon) & Hassan, Ibrahim Galal, 2023. "State-of-the-art review of occupant behavior modeling and implementation in building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    19. Tomasz Szul & Krzysztof Nęcka & Stanisław Lis, 2021. "Application of the Takagi-Sugeno Fuzzy Modeling to Forecast Energy Efficiency in Real Buildings Undergoing Thermal Improvement," Energies, MDPI, vol. 14(7), pages 1-16, March.
    20. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6299-:d:821029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.