IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6239-d820046.html
   My bibliography  Save this article

Review on the Test Methods and Devices for Mechanical Properties of Hydrate-Bearing Sediments

Author

Listed:
  • Mingtao Chen

    (College of Oceanography, Hohai University, Nanjing 210098, China
    Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China)

  • Yanlong Li

    (Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China)

  • Şükrü Merey

    (Department of Petroleum and Natural Gas Engineering, Batman University, Batman 72060, Turkey)

  • Nengyou Wu

    (College of Oceanography, Hohai University, Nanjing 210098, China
    Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China)

  • Qiaobo Hu

    (Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China)

  • Yajuan Zhang

    (College of Oceanography, Hohai University, Nanjing 210098, China
    Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China)

  • Lin Dong

    (Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China)

  • Guigang Yu

    (Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    Faculty of Engineering, China University of Geosciences, Wuhan 430074, China)

  • Haiyang Jiang

    (Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
    Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China)

Abstract

Commercial exploitation of marine natural gas hydrate (NGH) is crucial for energy decarbonization. However, hydrate production would weaken reservoir mechanical properties and trigger geohazards. Experimental instruments are the basis to obtain the mechanical responses of hydrate-bearing sediments (HBS). Considering the reservoir deformation processes from elastic deformation to residual deformation during hydrate exploitation, this study comprehensively reviewed the feasibility and mechanical research progress of the bender element, resonance column, atomic force microscope, triaxial shear, direct shear, ring shear, and static penetration in mechanical testing. Each test method’s precision and sample size were comprehensively compared and analyzed. Finally, the limitations and challenges of the current mechanical testing methods for HBS were discussed, and their future development directions were proposed. The proposed development direction in mechanical testing methods is expected to provide insightful guidance for the development of instruments and improve the understanding of the mechanical behavior of HBS.

Suggested Citation

  • Mingtao Chen & Yanlong Li & Şükrü Merey & Nengyou Wu & Qiaobo Hu & Yajuan Zhang & Lin Dong & Guigang Yu & Haiyang Jiang, 2022. "Review on the Test Methods and Devices for Mechanical Properties of Hydrate-Bearing Sediments," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6239-:d:820046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6239/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6239/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yanlong & Wu, Nengyou & Ning, Fulong & Gao, Deli & Hao, Xiluo & Chen, Qiang & Liu, Changling & Sun, Jianye, 2020. "Hydrate-induced clogging of sand-control screen and its implication on hydrate production operation," Energy, Elsevier, vol. 206(C).
    2. Sho Kimura & Hiroaki Kaneko & Takuma Ito & Hideki Minagawa, 2015. "Investigation of Fault Permeability in Sands with Different Mineral Compositions (Evaluation of Gas Hydrate Reservoir)," Energies, MDPI, vol. 8(7), pages 1-22, July.
    3. Feng, Yongchang & Chen, Lin & Suzuki, Anna & Kogawa, Takuma & Okajima, Junnosuke & Komiya, Atsuki & Maruyama, Shigenao, 2019. "Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 166(C), pages 1106-1119.
    4. Dong, Lin & Wan, Yizhao & Li, Yanlong & Liao, Hualin & Liu, Changling & Wu, Nengyou & Leonenko, Yuri, 2022. "3D numerical simulation on drilling fluid invasion into natural gas hydrate reservoirs," Energy, Elsevier, vol. 241(C).
    5. Li, Yanlong & Wu, Nengyou & Gao, Deli & Chen, Qiang & Liu, Changling & Yang, Daoyong & Jin, Yurong & Ning, Fulong & Tan, Mingjian & Hu, Gaowei, 2021. "Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production," Energy, Elsevier, vol. 219(C).
    6. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Min Zhang & Ming Niu & Shiwei Shen & Shulin Dai & Yan Xu, 2021. "Review of natural gas hydrate dissociation effects on seabed stability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1035-1045, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning, Fulong & Chen, Qiang & Sun, Jiaxin & Wu, Xiang & Cui, Guodong & Mao, Peixiao & Li, Yanlong & Liu, Tianle & Jiang, Guosheng & Wu, Nengyou, 2022. "Enhanced gas production of silty clay hydrate reservoirs using multilateral wells and reservoir reformation techniques: Numerical simulations," Energy, Elsevier, vol. 254(PA).
    2. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    3. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    4. Tang, Jiadi & Lei, Gang & Wu, Qi & Zhang, Ling & Ning, Fulong, 2024. "An improved analytical model of effective thermal conductivity for hydrate-bearing sediments during elastic-plastic deformation and local thermal stimulation," Energy, Elsevier, vol. 305(C).
    5. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    6. Zhong, Xiuping & Pan, Dongbin & Zhu, Ying & Wang, Yafei & Tu, Guigang & Nie, Shuaishuai & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2022. "Commercial production potential evaluation of injection-production mode for CH-Bk hydrate reservoir and investigation of its stimulated potential by fracture network," Energy, Elsevier, vol. 239(PB).
    7. Li, Xiao-Yan & Hu, Heng-Qi & Wang, Yi & Li, Xiao-Sen, 2022. "Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen," Energy, Elsevier, vol. 254(PB).
    8. Liu, Xiaoqiang & Sun, Ying & Guo, Tiankui & Rabiei, Minou & Qu, Zhanqing & Hou, Jian, 2022. "Numerical simulations of hydraulic fracturing in methane hydrate reservoirs based on the coupled thermo-hydrologic-mechanical-damage (THMD) model," Energy, Elsevier, vol. 238(PC).
    9. Yu, Tao & Guan, Guoqing & Wang, Dayong & Song, Yongchen & Abudula, Abuliti, 2021. "Numerical investigation on the long-term gas production behavior at the 2017 Shenhu methane hydrate production site," Applied Energy, Elsevier, vol. 285(C).
    10. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    11. Zhang, Zhengcai & Kusalik, Peter G. & Wu, Nengyou & Liu, Changling & Zhang, Yongchao, 2022. "Molecular simulation study on the stability of methane hydrate confined in slit-shaped pores," Energy, Elsevier, vol. 257(C).
    12. Zhao, Xin & Fang, Qingchao & Qiu, Zhengsong & Mi, Shiyou & Wang, Zhiyuan & Geng, Qi & Zhang, Yubin, 2022. "Experimental investigation on hydrate anti-agglomerant for oil-free systems in the production pipe of marine natural gas hydrates," Energy, Elsevier, vol. 242(C).
    13. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong, 2019. "3D visualization of fluid flow behaviors during methane hydrate extraction by hot water injection," Energy, Elsevier, vol. 188(C).
    14. Zhu, Huixing & Xu, Tianfu & Xin, Xin & Yuan, Yilong & Feng, Guanhong, 2022. "Numerical investigation of the three-phase layer production performance of an offshore natural gas hydrate trial production," Energy, Elsevier, vol. 257(C).
    15. Zhao, Yapeng & Kong, Liang & Liu, Jiaqi & Sang, Songkui & Zeng, Zhaoyuan & Wang, Ning & Yuan, Qingmeng, 2023. "Permeability properties of natural gas hydrate-bearing sediments considering dynamic stress coupling: A comprehensive experimental investigation," Energy, Elsevier, vol. 283(C).
    16. Yan, Chuanliang & Li, Yang & Cheng, Yuanfang & Wei, Jia & Tian, Wanqing & Li, Shuxia & Wang, Zhiyuan, 2022. "Multifield coupling mechanism in formations around a wellbore during the exploitation of methane hydrate with CO2 replacement," Energy, Elsevier, vol. 245(C).
    17. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    18. Liao, Bo & Wang, Jintang & Li, Mei-Chun & Lv, Kaihe & Wang, Qi & Li, Jian & Huang, Xianbing & Wang, Ren & Lv, Xindi & Chen, Zhangxin & Sun, Jinsheng, 2023. "Microscopic molecular and experimental insights into multi-stage inhibition mechanisms of alkylated hydrate inhibitor," Energy, Elsevier, vol. 279(C).
    19. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    20. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6239-:d:820046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.