IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031819.html
   My bibliography  Save this article

3D numerical simulation on drilling fluid invasion into natural gas hydrate reservoirs

Author

Listed:
  • Dong, Lin
  • Wan, Yizhao
  • Li, Yanlong
  • Liao, Hualin
  • Liu, Changling
  • Wu, Nengyou
  • Leonenko, Yuri

Abstract

The drilling fluid invasion into hydrate-bearing sediments (HBS) would trigger geological risks. However, invasion mechanisms and formation responses during drilling the gas hydrate reservoirs, especially the fluid-loss characteristics and control mechanisms of hydrate dissociation, remain poorly understood. Thus, we develop a three-dimensional (3-D) coupled thermal-hydro-chemical model to investigate the drilling fluid invasion process and dynamic responses of gas hydrate reservoirs. This model deals with the fluid-loss properties and flow field characteristics as well as well-formation interactions considering the effect of hydrate dissociation. The results indicate that the invasion characteristics mainly depend on drilling fluid pressure and permeability, while the temperature affects the hydrate dissociation. Besides, the fluid-loss velocity increases slowly after a sharp decrease at initial stage of invasion due to the increase of permeability induced by hydrate dissociation. Afterward, characteristics and mechanisms of drilling fluid invasion into hydrate reservoirs are determined by the invasion process coupled with hydrate dissociation. Given the unique characteristics of HBS, the invaded formation is divided into flushed zone, transition zone, and undisturbed zone, presenting a better description of the dynamic filtration process. Moreover, optimization strategies and drilling technology are proposed to prevent hydrate dissociation and control geological risks during drilling hydrate.

Suggested Citation

  • Dong, Lin & Wan, Yizhao & Li, Yanlong & Liao, Hualin & Liu, Changling & Wu, Nengyou & Leonenko, Yuri, 2022. "3D numerical simulation on drilling fluid invasion into natural gas hydrate reservoirs," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031819
    DOI: 10.1016/j.energy.2021.122932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Xiang & Luo, Tingting & Wang, Lei & Wang, Haijun & Song, Yongchen & Li, Yanghui, 2019. "Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization," Applied Energy, Elsevier, vol. 250(C), pages 7-18.
    2. Qibing Wang & Ren Wang & Jiaxin Sun & Jinsheng Sun & Cheng Lu & Kaihe Lv & Jintang Wang & Jianlong Wang & Jie Yang & Yuanzhi Qu, 2021. "Effect of Drilling Fluid Invasion on Natural Gas Hydrate Near-Well Reservoirs Drilling in a Horizontal Well," Energies, MDPI, vol. 14(21), pages 1-15, October.
    3. Yin, Zhenyuan & Moridis, George & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium," Applied Energy, Elsevier, vol. 220(C), pages 681-704.
    4. Liu, Xiaoqiang & Qu, Zhanqing & Guo, Tiankui & Sun, Ying & Rabiei, Minou & Liao, Hualin, 2021. "A coupled thermo-hydrologic-mechanical (THM) model to study the impact of hydrate phase transition on reservoir damage," Energy, Elsevier, vol. 216(C).
    5. Roostaie, M. & Leonenko, Y., 2020. "Gas production from methane hydrates upon thermal stimulation; an analytical study employing radial coordinates," Energy, Elsevier, vol. 194(C).
    6. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    7. Yin, Zhenyuan & Moridis, George & Chong, Zheng Rong & Tan, Hoon Kiang & Linga, Praveen, 2018. "Numerical analysis of experimental studies of methane hydrate dissociation induced by depressurization in a sandy porous medium," Applied Energy, Elsevier, vol. 230(C), pages 444-459.
    8. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingtao Chen & Yanlong Li & Şükrü Merey & Nengyou Wu & Qiaobo Hu & Yajuan Zhang & Lin Dong & Guigang Yu & Haiyang Jiang, 2022. "Review on the Test Methods and Devices for Mechanical Properties of Hydrate-Bearing Sediments," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    2. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    3. Dong, Lin & Wu, Nengyou & Leonenko, Yuri & Wan, Yizhao & Zhang, Yajuan & Li, Yanlong, 2024. "Numerical analysis on hydrate production performance with multi-well systems: Synergistic effect of adjacent wells and implications on field exploitation," Energy, Elsevier, vol. 290(C).
    4. Dong, Lin & Wu, Nengyou & Leonenko, Yuri & Wan, Yizhao & Liao, Hualin & Hu, Gaowei & Li, Yanlong, 2023. "A coupled thermal-hydraulic-mechanical model for drilling fluid invasion into hydrate-bearing sediments," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    2. Zhao, Ermeng & Hou, Jian & Ji, Yunkai & Liu, Yongge & Bai, Yajie, 2021. "Enhancing gas production from Class II hydrate deposits through depressurization combined with low-frequency electric heating under dual horizontal wells," Energy, Elsevier, vol. 233(C).
    3. Luo, Tingting & Li, Yanghui & Madhusudhan, B.N. & Sun, Xiang & Song, Yongchen, 2020. "Deformation behaviors of hydrate-bearing silty sediment induced by depressurization and thermal recovery," Applied Energy, Elsevier, vol. 276(C).
    4. Zhao, Ermeng & Hou, Jian & Liu, Yongge & Ji, Yunkai & Liu, Wenbin & Lu, Nu & Bai, Yajie, 2020. "Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea," Energy, Elsevier, vol. 213(C).
    5. Tian, Hailong & Yu, Ceting & Xu, Tianfu & Liu, Changling & Jia, Wei & Li, Yuanping & Shang, Songhua, 2020. "Combining reactive transport modeling with geochemical observations to estimate the natural gas hydrate accumulation," Applied Energy, Elsevier, vol. 275(C).
    6. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    7. Wang, Feifei & Shen, Kaixiang & Zhang, Zhilei & Zhang, Di & Wang, Zhenqing & Wang, Zizhen, 2023. "Numerical simulation of natural gas hydrate development with radial horizontal wells based on thermo-hydro-chemistry coupling," Energy, Elsevier, vol. 272(C).
    8. Dong, Lin & Li, Yanlong & Wu, Nengyou & Wan, Yizhao & Liao, Hualin & Wang, Huajian & Zhang, Yajuan & Ji, Yunkai & Hu, Gaowei & Leonenko, Yuri, 2023. "Numerical simulation of gas extraction performance from hydrate reservoirs using double-well systems," Energy, Elsevier, vol. 265(C).
    9. Yin, Faling & Gao, Yonghai & Zhang, Heen & Sun, Baojiang & Chen, Ye & Gao, Dongzhi & Zhao, Xinxin, 2022. "Comprehensive evaluation of gas production efficiency and reservoir stability of horizontal well with different depressurization methods in low permeability hydrate reservoir," Energy, Elsevier, vol. 239(PE).
    10. Yin, Faling & Gao, Yonghai & Chen, Ye & Sun, Baojiang & Li, Shaoqiang & Zhao, Danshi, 2022. "Numerical investigation on the long-term production behavior of horizontal well at the gas hydrate production site in South China Sea," Applied Energy, Elsevier, vol. 311(C).
    11. Yin, Zhenyuan & Wan, Qing-Cui & Gao, Qiang & Linga, Praveen, 2020. "Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments," Applied Energy, Elsevier, vol. 271(C).
    12. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    13. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    14. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    15. Liao, Youqiang & Zheng, Junjie & Wang, Zhiyuan & Sun, Baojiang & Sun, Xiaohui & Linga, Praveen, 2022. "Modeling and characterizing the thermal and kinetic behavior of methane hydrate dissociation in sandy porous media," Applied Energy, Elsevier, vol. 312(C).
    16. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
    17. Mao, Peixiao & Wan, Yizhao & Sun, Jiaxin & Li, Yanlong & Hu, Gaowei & Ning, Fulong & Wu, Nengyou, 2021. "Numerical study of gas production from fine-grained hydrate reservoirs using a multilateral horizontal well system," Applied Energy, Elsevier, vol. 301(C).
    18. Sun, Xiang & Li, Yanghui & Liu, Yu & Song, Yongchen, 2019. "The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization," Energy, Elsevier, vol. 185(C), pages 837-846.
    19. Zhu, Yi-Jian & Chu, Yan-Song & Huang, Xing & Wang, Ling-Ban & Wang, Xiao-Hui & Xiao, Peng & Sun, Yi-Fei & Pang, Wei-Xin & Li, Qing-Ping & Sun, Chang-Yu & Chen, Guang-Jin, 2023. "Stability of hydrate-bearing sediment during methane hydrate production by depressurization or intermittent CO2/N2 injection," Energy, Elsevier, vol. 269(C).
    20. Feng, Yongchang & Chen, Lin & Kanda, Yuki & Suzuki, Anna & Komiya, Atsuki & Maruyama, Shigenao, 2021. "Numerical analysis of gas production from large-scale methane hydrate sediments with fractures," Energy, Elsevier, vol. 236(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.