IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6132-d818319.html
   My bibliography  Save this article

Impact of Urbanization on Seismic Risk: A Study Based on Remote Sensing Data

Author

Listed:
  • Liqiang An

    (Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
    Emergency Information Center, Tianjin Earthquake Agency, Tianjin 300201, China)

  • Jingfa Zhang

    (Key Laboratory of Emergency Satellite Engineering and Application, Ministry of Emergency Management, Beijing 100124, China)

Abstract

The management of seismic risk is an important aspect of social development. However, urbanization has led to an increase in disaster-bearing bodies, making it more difficult to reduce seismic risk. To understand the changes in seismic risk associated with urbanization and then adjust the risk management strategy, remote-sensing technology is necessary. By identifying the types of earthquake-bearing bodies, it is possible to estimate the seismic risk and then determine the changes. For this purpose, this study proposes a set of algorithms that combine deep-learning models with object-oriented image classification and extract building information using multisource remote sensing data. Following this, the area of the building is estimated, the vulnerability is determined, and, lastly, the economic and social impacts of an earthquake are determined based on the corresponding ground motion level and fragility function. Our study contributes to the understanding of changes in seismic risk caused by urbanization processes and offers a practical reference for updating seismic risk management, as well as a methodological framework to evaluate the effectiveness of seismic policies. Experimental results indicate that the proposed model is capable of effectively capturing buildings’ information. Through verification, the overall accuracy of the classification of vulnerability types reaches 86.77%. Furthermore, this study calculates social and economic losses of the core area of Tianjin Baodi District in 2011, 2012, 2014, 2016, 2018, 2020, and 2021, obtaining changes in seismic risk in the study area. The result shows that for rare earthquakes at night, although the death rate decreased from 2.29% to 0.66%, the possible death toll seems unchanged, due to the increase in population.

Suggested Citation

  • Liqiang An & Jingfa Zhang, 2022. "Impact of Urbanization on Seismic Risk: A Study Based on Remote Sensing Data," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6132-:d:818319
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boyu Feng & Ying Zhang & Robin Bourke, 2021. "Urbanization impacts on flood risks based on urban growth data and coupled flood models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 613-627, March.
    2. Ismaël Riedel & Philippe Guéguen & Mauro Dalla Mura & Erwan Pathier & Thomas Leduc & Jocelyn Chanussot, 2015. "Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1111-1141, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian Ma & Anirudh Rao & Vitor Silva & Kai Liu & Ming Wang, 2021. "A township-level exposure model of residential buildings for mainland China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 389-423, August.
    2. Sonu Thaivalappil Sukumaran & Stephen J. Birkinshaw, 2024. "Investigating the Impact of Recent and Future Urbanization on Flooding in an Indian River Catchment," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    3. Gean Carlos Gonzaga da Silva & Priscila Celebrini de Oliveira Campos & Marcelo de Miranda Reis & Igor Paz, 2023. "Spatiotemporal Land Use and Land Cover Changes and Associated Runoff Impact in Itaperuna, Brazil," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    4. Haiqiang Liu & Zhiheng Zhou & Qiang Wen & Jinyuan Chen & Shoichi Kojima, 2024. "Spatiotemporal Land Use/Land Cover Changes and Impact on Urban Thermal Environments: Analyzing Cool Island Intensity Variations," Sustainability, MDPI, vol. 16(8), pages 1-22, April.
    5. Jihye Han & Soyoung Park & Seongheon Kim & Sanghun Son & Seonghyeok Lee & Jinsoo Kim, 2019. "Performance of Logistic Regression and Support Vector Machines for Seismic Vulnerability Assessment and Mapping: A Case Study of the 12 September 2016 ML5.8 Gyeongju Earthquake, South Korea," Sustainability, MDPI, vol. 11(24), pages 1-19, December.
    6. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    7. Huaibin Wei & Liyuan Zhang & Jing Liu, 2022. "Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    8. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    9. Eliana Fischer & Giovanni Barreca & Annalisa Greco & Francesco Martinico & Alessandro Pluchino & Andrea Rapisarda, 2023. "Seismic risk assessment of a large metropolitan area by means of simulated earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 117-153, August.
    10. Abdelheq Guettiche & Philippe Guéguen & Mostefa Mimoune, 2017. "Seismic vulnerability assessment using association rule learning: application to the city of Constantine, Algeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1223-1245, April.
    11. Dariusz Młyński & Wiktor Halecki & Karolina Surowiec, 2024. "Urban Flood Modeling for Sustainability Management: Role of Design Rainfall and Land Use," Sustainability, MDPI, vol. 16(11), pages 1-21, June.
    12. Aboubakar Gasirabo & Chen Xi & Baligira R. Hamad & Umwali Dufatanye Edovia, 2023. "A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda," Land, MDPI, vol. 12(9), pages 1-20, September.
    13. Samith Madusanka & Chethika Abenayake & Amila Jayasinghe & Chaminda Perera, 2022. "A Decision-Making Tool for Urban Planners: A Framework to Model the Interdependency among Land Use, Accessibility, Density, and Surface Runoff in Urban Areas," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
    14. Maqsood Mansur & Julia Hopkins & Qin Chen, 2023. "Estuarine response to storm surge and sea-level rise associated with channel deepening: a flood vulnerability assessment of southwest Louisiana, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3879-3897, April.
    15. Engdawork Assefa, 2024. "Urban Land Use Trend and Drivers over the Last Three Decades in Addis Ababa and Impacts to the Sustainable Land Management," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(1), pages 119-119, January.
    16. Xiaoli Du & Mingzhe Yang & Zijie Yin & Xing Fang, 2023. "Influence of Initial Abstraction Ratios in NRCS-CN Model on Runoff Estimation of Permeable Brick Pavement Affected by Clogging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3211-3225, June.
    17. L. Gerardo F. Salazar & Tiago Miguel Ferreira, 2020. "Seismic Vulnerability Assessment of Historic Constructions in the Downtown of Mexico City," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    18. Pengcheng Zhong & Yueyi Liu & Hang Zheng & Jianshi Zhao, 2024. "Detection of Urban Flood Inundation from Traffic Images Using Deep Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 287-301, January.
    19. Mahmoud Mabrouk & Haoying Han & Mahran Gamal N. Mahran & Karim I. Abdrabo & Ahmed Yousry, 2024. "Revisiting Urban Resilience: A Systematic Review of Multiple-Scale Urban Form Indicators in Flood Resilience Assessment," Sustainability, MDPI, vol. 16(12), pages 1-44, June.
    20. Rabin Lamichhane & Gokarna Bahadur Motra & Thaman Bahadur Khadka & Y. X. Zhang & Prabin Pathak & Shikhar Pandit, 2024. "Impact of Water Level Variation on Mechanical Properties of Porous Concrete," Sustainability, MDPI, vol. 16(9), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6132-:d:818319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.