IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4805-d1409001.html
   My bibliography  Save this article

Urban Flood Modeling for Sustainability Management: Role of Design Rainfall and Land Use

Author

Listed:
  • Dariusz Młyński

    (Department of Sanitary Engineering and Water Management, University of Agriculture in Krakow, Mickiewicza 21, 31-120 Krakow, Poland)

  • Wiktor Halecki

    (Institute of Technology and Life Sciences-National Research Institute, Falenty, Hrabska 3, 05-090 Raszyn, Poland)

  • Karolina Surowiec

    (Antea Poland S.A. Company, Dulęby 5, 40-833 Katowice, Poland)

Abstract

This study aimed to evaluate how different methods of determining design rainfall levels and land usage affect flood hydrographs in an urban catchment; specifically, the catchment in southern Poland. The data included daily precipitation records from 1981 to 2020 and land cover information from Corine Land Cover and Urban Atlas databases for 2006 and 2018. The analysis involved examining precipitation data, determining design rainfall levels, analyzing land usage databases, exploring the influence of design rainfall levels on hydrograph characteristics, and investigating the database’s impact on these characteristics. No discernible trend in precipitation was found. The highest design rainfall values followed the GEV distribution, while the lowest followed the Gumbel distribution. Both land usage databases indicated an increasing human influence from 2006 to 2018. This study conclusively showed that the method used for estimating design rainfall and the choice of the land usage database significantly affected hydrograph characteristics. Multivariate analyses are recommended for design rainfall assessments, while the Urban Atlas database is preferred for urban catchment land usage determinations due to its detailed information.

Suggested Citation

  • Dariusz Młyński & Wiktor Halecki & Karolina Surowiec, 2024. "Urban Flood Modeling for Sustainability Management: Role of Design Rainfall and Land Use," Sustainability, MDPI, vol. 16(11), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4805-:d:1409001
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4805/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4805/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamal El Kadi Abderrezzak & André Paquier & Emmanuel Mignot, 2009. "Modelling flash flood propagation in urban areas using a two-dimensional numerical model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 433-460, September.
    2. Andrzej WALEGA & Boguslaw MICHALEC, 2014. "Characteristics of extreme heavy precipitation events occurring in the area of Cracow (Poland)," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(4), pages 182-191.
    3. Boyu Feng & Ying Zhang & Robin Bourke, 2021. "Urbanization impacts on flood risks based on urban growth data and coupled flood models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 613-627, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zakariye Mohamed Said & Serdar Dindar, 2024. "Key Challenges and Strategies in the Evaluation of Sustainable Urban Regeneration Projects: Insights from a Systematic Literature Review," Sustainability, MDPI, vol. 16(22), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonu Thaivalappil Sukumaran & Stephen J. Birkinshaw, 2024. "Investigating the Impact of Recent and Future Urbanization on Flooding in an Indian River Catchment," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    2. Gean Carlos Gonzaga da Silva & Priscila Celebrini de Oliveira Campos & Marcelo de Miranda Reis & Igor Paz, 2023. "Spatiotemporal Land Use and Land Cover Changes and Associated Runoff Impact in Itaperuna, Brazil," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    3. Haiqiang Liu & Zhiheng Zhou & Qiang Wen & Jinyuan Chen & Shoichi Kojima, 2024. "Spatiotemporal Land Use/Land Cover Changes and Impact on Urban Thermal Environments: Analyzing Cool Island Intensity Variations," Sustainability, MDPI, vol. 16(8), pages 1-21, April.
    4. Tong Xu & Zhiqiang Xie & Fei Zhao & Yimin Li & Shouquan Yang & Yangbin Zhang & Siqiao Yin & Shi Chen & Xuan Li & Sidong Zhao & Zhiqun Hou, 2022. "Permeability control and flood risk assessment of urban underlying surface: a case study of Runcheng south area, Kunming," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 661-686, March.
    5. Huaibin Wei & Liyuan Zhang & Jing Liu, 2022. "Hydrodynamic Modelling and Flood Risk Analysis of Urban Catchments under Multiple Scenarios: A Case Study of Dongfeng Canal District, Zhengzhou," IJERPH, MDPI, vol. 19(22), pages 1-18, November.
    6. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang, 2022. "Assessment of the Relationship between Land Use and Flood Risk Based on a Coupled Hydrological–Hydraulic Model: A Case Study of Zhaojue River Basin in Southwestern China," Land, MDPI, vol. 11(8), pages 1-24, July.
    7. Aboubakar Gasirabo & Chen Xi & Baligira R. Hamad & Umwali Dufatanye Edovia, 2023. "A CA–Markov-Based Simulation and Prediction of LULC Changes over the Nyabarongo River Basin, Rwanda," Land, MDPI, vol. 12(9), pages 1-20, September.
    8. Samith Madusanka & Chethika Abenayake & Amila Jayasinghe & Chaminda Perera, 2022. "A Decision-Making Tool for Urban Planners: A Framework to Model the Interdependency among Land Use, Accessibility, Density, and Surface Runoff in Urban Areas," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
    9. Maqsood Mansur & Julia Hopkins & Qin Chen, 2023. "Estuarine response to storm surge and sea-level rise associated with channel deepening: a flood vulnerability assessment of southwest Louisiana, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3879-3897, April.
    10. Yijun Shi & Guofang Zhai & Shutian Zhou & Yuwen Lu & Wei Chen & Jinyang Deng, 2019. "How Can Cities Respond to Flood Disaster Risks under Multi-Scenario Simulation? A Case Study of Xiamen, China," IJERPH, MDPI, vol. 16(4), pages 1-18, February.
    11. H. Zaifoglu & A. M. Yanmaz & B. Akintug, 2019. "Developing flood mitigation measures for the northern part of Nicosia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(2), pages 535-557, September.
    12. Engdawork Assefa, 2024. "Urban Land Use Trend and Drivers over the Last Three Decades in Addis Ababa and Impacts to the Sustainable Land Management," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(1), pages 119-119, January.
    13. Xiaoli Du & Mingzhe Yang & Zijie Yin & Xing Fang, 2023. "Influence of Initial Abstraction Ratios in NRCS-CN Model on Runoff Estimation of Permeable Brick Pavement Affected by Clogging," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 3211-3225, June.
    14. Pengcheng Zhong & Yueyi Liu & Hang Zheng & Jianshi Zhao, 2024. "Detection of Urban Flood Inundation from Traffic Images Using Deep Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 287-301, January.
    15. Mahmoud Mabrouk & Haoying Han & Mahran Gamal N. Mahran & Karim I. Abdrabo & Ahmed Yousry, 2024. "Revisiting Urban Resilience: A Systematic Review of Multiple-Scale Urban Form Indicators in Flood Resilience Assessment," Sustainability, MDPI, vol. 16(12), pages 1-47, June.
    16. Rabin Lamichhane & Gokarna Bahadur Motra & Thaman Bahadur Khadka & Y. X. Zhang & Prabin Pathak & Shikhar Pandit, 2024. "Impact of Water Level Variation on Mechanical Properties of Porous Concrete," Sustainability, MDPI, vol. 16(9), pages 1-14, April.
    17. Ante Šiljeg & Lovre Panđa & Rajko Marinović & Nino Krvavica & Fran Domazetović & Mladen Jurišić & Dorijan Radočaj, 2023. "Infiltration Efficiency Index for GIS Analysis Using Very-High-Spatial-Resolution Data," Sustainability, MDPI, vol. 15(21), pages 1-28, November.
    18. Xiaoling Wang & Wenlong Chen & Zhengyin Zhou & Yushan Zhu & Cheng Wang & Zhen Liu, 2017. "Three-dimensional flood routing of a dam break based on a high-precision digital model of a dense urban area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1147-1174, April.
    19. Pierfranco Costabile & Francesco Macchione & Luigi Natale & Gabriella Petaccia, 2015. "Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 181-204, May.
    20. Alessio Gatto & Stefano Clò & Federico Martellozzo & Samuele Segoni, 2023. "Tracking a Decade of Hydrogeological Emergencies in Italian Municipalities," Data, MDPI, vol. 8(10), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4805-:d:1409001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.