IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i3d10.1007_s11069-023-05841-1.html
   My bibliography  Save this article

Estuarine response to storm surge and sea-level rise associated with channel deepening: a flood vulnerability assessment of southwest Louisiana, USA

Author

Listed:
  • Maqsood Mansur

    (Northeastern University)

  • Julia Hopkins

    (Northeastern University
    Northeastern University)

  • Qin Chen

    (Northeastern University
    Northeastern University)

Abstract

This study investigates the sensitivity of the Calcasieu Lake estuarine region to channel deepening in southwest Louisiana in the USA. We test the hypothesis that the depth increase in a navigational channel in an estuarine region results in the amplification of the inland penetration of storm surge, thereby increasing the flood vulnerability of the region. We run numerical experiments using the Delft3D modeling suite (validated with observational data) with different historic channel depth scenarios. Model results show that channel deepening facilitates increased water movement into the lake–estuary system during a storm surge event. The inland peak water level increases by 37% in the presence of the deepest channel. Moreover, the peak volumetric flow rate increases by 291.6% along the navigational channel. Furthermore, the tidal prism and the volume of surge prism passing through the channel inlet increase by 487% and 153.3%, respectively. In our study, the presence of the deepest channel results in extra 56.72 km2 of flooded area (approximately 12% increase) which is an indication that channel deepening over the years has rendered the region more vulnerable to hurricane-induced flooding. The study also analyzes the impact of channel deepening on storm surge in estuaries under different future sea-level rise (SLR) scenarios. Simulations suggest that even the most conservative scenario of SLR will cause an approximately 51% increase in flooded area in the presence of the deepest ship channel, thereby suggesting that rising sea level will cause increased surge penetration and increased flood risk.

Suggested Citation

  • Maqsood Mansur & Julia Hopkins & Qin Chen, 2023. "Estuarine response to storm surge and sea-level rise associated with channel deepening: a flood vulnerability assessment of southwest Louisiana, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3879-3897, April.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05841-1
    DOI: 10.1007/s11069-023-05841-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05841-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05841-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kerry Emanuel, 2005. "Increasing destructiveness of tropical cyclones over the past 30 years," Nature, Nature, vol. 436(7051), pages 686-688, August.
    2. Jana Haddad & Seth Lawler & Celso M. Ferreira, 2016. "Assessing the relevance of wetlands for storm surge protection: a coupled hydrodynamic and geospatial framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 839-861, January.
    3. P. M. Orton & F. R. Conticello & F. Cioffi & T. M. Hall & N. Georgas & U. Lall & A. F. Blumberg & K. MacManus, 2020. "Flood hazard assessment from storm tides, rain and sea level rise for a tidal river estuary," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(2), pages 729-757, June.
    4. Ty Wamsley & Mary Cialone & Jane Smith & Bruce Ebersole & Alison Grzegorzewski, 2009. "Influence of landscape restoration and degradation on storm surge and waves in southern Louisiana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(1), pages 207-224, October.
    5. Hyungjun Park & Robert Paterson & Stephen Zigmund & Hyunsuk Shin & Youngsu Jang & Juchul Jung, 2020. "The Effect of Coastal City Development on Flood Damage in South Korea," Sustainability, MDPI, vol. 12(5), pages 1-15, March.
    6. Wei-Bo Chen & Wen-Cheng Liu, 2016. "Assessment of storm surge inundation and potential hazard maps for the southern coast of Taiwan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 591-616, May.
    7. Khandker Tasnim & Tomoya Shibayama & Miguel Esteban & Hiroshi Takagi & Koichiro Ohira & Ryota Nakamura, 2015. "Field observation and numerical simulation of past and future storm surges in the Bay of Bengal: case study of cyclone Nargis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1619-1647, January.
    8. Jana Haddad & Seth Lawler & Celso Ferreira, 2016. "Assessing the relevance of wetlands for storm surge protection: a coupled hydrodynamic and geospatial framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 839-861, January.
    9. Kerry Emanuel, 2021. "Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Gabriel A. Vecchi & Christopher Landsea & Wei Zhang & Gabriele Villarini & Thomas Knutson, 2021. "Changes in Atlantic major hurricane frequency since the late-19th century," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    11. Boyu Feng & Ying Zhang & Robin Bourke, 2021. "Urbanization impacts on flood risks based on urban growth data and coupled flood models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 613-627, March.
    12. Christine Shepard & Vera Agostini & Ben Gilmer & Tashya Allen & Jeff Stone & William Brooks & Michael Beck, 2012. "Assessing future risk: quantifying the effects of sea level rise on storm surge risk for the southern shores of Long Island, New York," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 727-745, January.
    13. Edward B Barbier & Ioannis Y Georgiou & Brian Enchelmeyer & Denise J Reed, 2013. "The Value of Wetlands in Protecting Southeast Louisiana from Hurricane Storm Surges," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-6, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raphaël Rousseau-Rizzi & Kerry Emanuel, 2022. "Natural and anthropogenic contributions to the hurricane drought of the 1970s–1980s," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Edward B. Barbier, 2016. "The Protective Value of Estuarine and Coastal Ecosystem Services in a Wealth Accounting Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 37-58, May.
    3. Martin Mäll & Ryota Nakamura & Ülo Suursaar & Tomoya Shibayama, 2020. "Pseudo-climate modelling study on projected changes in extreme extratropical cyclones, storm waves and surges under CMIP5 multi-model ensemble: Baltic Sea perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 67-99, May.
    4. Kerry Emanuel, 2021. "Atlantic tropical cyclones downscaled from climate reanalyses show increasing activity over past 150 years," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Thit Oo Kyaw & Miguel Esteban & Martin Mäll & Tomoya Shibayama, 2021. "Extreme waves induced by cyclone Nargis at Myanmar coast: numerical modeling versus satellite observations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 1797-1818, April.
    6. Md. Ali Akber & Muhammad Mainuddin Patwary & Md. Atikul Islam & Mohammad Rezaur Rahman, 2018. "Storm protection service of the Sundarbans mangrove forest, Bangladesh," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 405-418, October.
    7. Martin Mäll & Ülo Suursaar & Ryota Nakamura & Tomoya Shibayama, 2017. "Modelling a storm surge under future climate scenarios: case study of extratropical cyclone Gudrun (2005)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(3), pages 1119-1144, December.
    8. A. D. Rao & Puja Upadhaya & Hyder Ali & Smita Pandey & Vidya Warrier, 2020. "Coastal inundation due to tropical cyclones along the east coast of India: an influence of climate change impact," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 39-57, March.
    9. Stanley Changnon, 2009. "Characteristics of severe Atlantic hurricanes in the United States: 1949–2006," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 329-337, March.
    10. Lianjie Qin & Laiyin Zhu & Baoyin Liu & Zixuan Li & Yugang Tian & Gordon Mitchell & Shifei Shen & Wei Xu & Jianguo Chen, 2024. "Global expansion of tropical cyclone precipitation footprint," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    12. Yanos Zylberberg, 2010. "Natural natural disasters and economic disruption," PSE Working Papers halshs-00564946, HAL.
    13. S. Seo, 2014. "Estimating Tropical Cyclone Damages Under Climate Change in the Southern Hemisphere Using Reported Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 473-490, July.
    14. Nicola Ranger & Falk Nieh�rster, 2011. "Deep uncertainty in long-term hurricane risk: scenario generation and implications for future climate experiments," GRI Working Papers 51, Grantham Research Institute on Climate Change and the Environment.
    15. Sonu Thaivalappil Sukumaran & Stephen J. Birkinshaw, 2024. "Investigating the Impact of Recent and Future Urbanization on Flooding in an Indian River Catchment," Sustainability, MDPI, vol. 16(13), pages 1-22, July.
    16. Gean Carlos Gonzaga da Silva & Priscila Celebrini de Oliveira Campos & Marcelo de Miranda Reis & Igor Paz, 2023. "Spatiotemporal Land Use and Land Cover Changes and Associated Runoff Impact in Itaperuna, Brazil," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
    17. Jun Wang & Zhenlou Chen & Shiyuan Xu & Beibei Hu, 2013. "Medium-scale natural disaster risk scenario analysis: a case study of Pingyang County, Wenzhou, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1205-1220, March.
    18. Geoffrey Heal & Howard Kunreuther, 2010. "Environment and Energy: Catastrophic Liabilities from Nuclear Power Plants," NBER Chapters, in: Measuring and Managing Federal Financial Risk, pages 235-257, National Bureau of Economic Research, Inc.
    19. Laura A. Bakkensen & Robert O. Mendelsohn, 2016. "Risk and Adaptation: Evidence from Global Hurricane Damages and Fatalities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(3), pages 555-587.
    20. Davlasheridze, Meri & Fisher-Vanden, Karen & Allen Klaiber, H., 2017. "The effects of adaptation measures on hurricane induced property losses: Which FEMA investments have the highest returns?," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 93-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05841-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.