IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4508-d538483.html
   My bibliography  Save this article

Analysis of Heavy Metal Content in Soil and Plants in the Dumping Ground of Magnesite Mining Factory Jelšava-Lubeník (Slovakia)

Author

Listed:
  • Lenka Štofejová

    (Department of Environmental Management, Faculty of Management, University of Prešov, Konštantínova 16, 080 01 Prešov, Slovakia)

  • Juraj Fazekaš

    (Department of Environmental Management, Faculty of Management, University of Prešov, Konštantínova 16, 080 01 Prešov, Slovakia)

  • Danica Fazekašová

    (Department of Environmental Management, Faculty of Management, University of Prešov, Konštantínova 16, 080 01 Prešov, Slovakia)

Abstract

A high content of heavy metals in the soil and plants of a magnesite mining area might cause serious damage to the environment and can be a threat to the health of the surrounding population. This paper presents the results of research that focused on analyzing the heavy metal content in soil and plants in the dumping grounds of the magnesite mining factory Jelšava-Lubeník (Slovakia). The analysis focused on the content of heavy metals in soil (X-ray fluorescence spectrometry, atomic absorption spectrometry), in plants (inductively coupled plasma mass spectrometry, inductively coupled plasma atomic emission spectrometry), and pH (1M KCl solution). The results showed that the soil in the study area was slightly acidic to strongly alkaline and the content of Cr, As, Mn, and Mg exceeded by several times the limit values for the Slovak Republic. The results of the hierarchical cluster analysis and the correlation analysis show that the grouped metals come from the same sources of pollution. The content of heavy metals in plants was high and the highest concentration was found in the roots of Elytrigia repens > Agrostis stolonifera > Phragmites australis and flowers of Phragmites australis . The findings confirmed the suitability of the used plants in the process of phytoextraction and phytostabilization. The acquired knowledge can help in planning and realization remediation measures and improve the state of the environment in areas exposed to magnesite mining.

Suggested Citation

  • Lenka Štofejová & Juraj Fazekaš & Danica Fazekašová, 2021. "Analysis of Heavy Metal Content in Soil and Plants in the Dumping Ground of Magnesite Mining Factory Jelšava-Lubeník (Slovakia)," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4508-:d:538483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinwei Xu & Chong Liu & Po-Chun Hsu & Jie Zhao & Tong Wu & Jing Tang & Kai Liu & Yi Cui, 2019. "Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. L. Q. Ma & K. M. Komar & Cong Tu & Weihua Zhang & Yong Cai & E. D. Kennelley, 2001. "A fern that hyperaccumulates arsenic," Nature, Nature, vol. 411(6836), pages 438-438, May.
    3. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    4. Lena Q. Ma & Kenneth M. Komar & Cong Tu & Weihua Zhang & Yong Cai & Elizabeth D. Kennelley, 2001. "A fern that hyperaccumulates arsenic," Nature, Nature, vol. 409(6820), pages 579-579, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Thalassinos & Spyridon A. Petropoulos & Aspasia Grammenou & Vasileios Antoniadis, 2023. "Potentially Toxic Elements: A Review on Their Soil Behavior and Plant Attenuation Mechanisms against Their Toxicity," Agriculture, MDPI, vol. 13(9), pages 1-21, August.
    2. Qiaoli Wang & Jiannan Cai & Feng Gao & Zijun Li & Mengsheng Zhang, 2023. "Pollution Level, Ecological Risk Assessment and Vertical Distribution Pattern Analysis of Heavy Metals in the Tailings Dam of an Abandon Lead–Zinc Mine," Sustainability, MDPI, vol. 15(15), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saud S. Aloud & Khaled D. Alotaibi & Khalid F. Almutairi & Fahad N. Albarakah, 2022. "Assessment of Heavy Metals Accumulation in Soil and Native Plants in an Industrial Environment, Saudi Arabia," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    2. Veronika Zemanová & Daniela Pavlíková & Milan Novák & Petre I. Dobrev & Tomáš Matoušek & Václav Motyka & Milan Pavlík, 2022. "Arsenic-induced response in roots of arsenic-hyperaccumulator fern and soil enzymatic activity changes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(5), pages 213-222.
    3. Jin Wu & Ruitao Jia & Hao Xuan & Dasheng Zhang & Guoming Zhang & Yuting Xiao, 2022. "Priority Soil Pollution Management of Contaminated Site Based on Human Health Risk Assessment: A Case Study in Southwest China," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    4. Nurfitri Abdul Gafur & Masayuki Sakakibara & Satoru Komatsu & Sakae Sano & Koichiro Sera, 2022. "Environmental Survey of the Distribution and Metal Contents of Pteris vittata in Arsenic–Lead–Mercury-Contaminated Gold Mining Areas along the Bone River in Gorontalo Province, Indonesia," IJERPH, MDPI, vol. 19(1), pages 1-13, January.
    5. Udai B. Singh & Deepti Malviya & Shailendra Singh & Prakash Singh & Abhijeet Ghatak & Muhammad Imran & Jai P. Rai & Rajiv K. Singh & Madhab C. Manna & Arun K. Sharma & Anil K. Saxena, 2021. "Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Plant Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil," IJERPH, MDPI, vol. 18(18), pages 1-25, September.
    6. Protima Dhar & Kazuhiro Kobayashi & Kazuhiro Ujiie & Fumihiko Adachi & Junko Kasuga & Ikuko Akahane & Tomohito Arao & Shingo Matsumoto, 2020. "The Increase in the Arsenic Concentration in Brown Rice Due to High Temperature during the Ripening Period and Its Reduction by Silicate Material Treatment," Agriculture, MDPI, vol. 10(7), pages 1-16, July.
    7. Cristina Hegedus & Simona-Nicoleta Pașcalău & Luisa Andronie & Ancuţa-Simona Rotaru & Alexandra-Antonia Cucu & Daniel Severus Dezmirean, 2023. "The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction," Agriculture, MDPI, vol. 13(3), pages 1-49, March.
    8. Agnieszka Dradrach & Anna Karczewska & Katarzyna Szopka & Karolina Lewińska, 2020. "Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland," IJERPH, MDPI, vol. 17(9), pages 1-16, May.
    9. Chen Li & Xiaohui Ji & Xuegang Luo, 2019. "Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018," IJERPH, MDPI, vol. 16(23), pages 1-28, November.
    10. R.W. Feng & C.Y. Wei, 2012. "Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(3), pages 105-110.
    11. Małgorzata Szostek & Natalia Matłok & Patryk Kosowski & Anna Ilek & Maciej Balawejder, 2023. "Changes in Speciation and Bioavailability of Trace Elements in Sewage Sludge after the Ozonation Process," Agriculture, MDPI, vol. 13(4), pages 1-14, March.
    12. Alexandra D. Solomou & Rafaelia Germani & Nikolaos Proutsos & Michaela Petropoulou & Petros Koutroumpilas & Christos Galanis & Georgios Maroulis & Antonios Kolimenakis, 2022. "Utilizing Mediterranean Plants to Remove Contaminants from the Soil Environment: A Short Review," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    13. Farahat S. Moghanm & Antar El-Banna & Mohamed A. El-Esawi & Mohamed M. Abdel-Daim & Ahmed Mosa & Khaled A.A. Abdelaal, 2020. "Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    14. Shuang Song & Qianqian Sheng & Zunling Zhu & Yanli Liu, 2023. "Application of Multi-Plant Symbiotic Systems in Phytoremediation: A Bibliometric Review," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    15. Kinga Drzewiecka & Przemysław Gawrysiak & Magdalena Woźniak & Michał Rybak, 2023. "Metal Accumulation and Tolerance of Energy Willow to Copper and Nickel under Simulated Drought Conditions," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    16. Ning Han & Chongyang Yang & Shunya Shimomura & Chihiro Inoue & Mei-Fang Chien, 2022. "Empirical Evidence of Arsenite Oxidase Gene as an Indicator Accounting for Arsenic Phytoextraction by Pteris vittata," IJERPH, MDPI, vol. 19(3), pages 1-11, February.
    17. Mengting Lin & Sairu Ma & Jie Liu & Xusheng Jiang & Demin Dai, 2024. "Remediation of Arsenic and Cadmium Co-Contaminated Soil: A Review," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
    18. Dongping Shi & Chengyu Xie & Jinmiao Wang & Lichun Xiong, 2021. "Changes in the Structures and Directions of Heavy Metal-Contaminated Soil Remediation Research from 1999 to 2020: A Bibliometric & Scientometric Study," IJERPH, MDPI, vol. 18(14), pages 1-14, July.
    19. Saud S. Aloud & Khaled D. Alotaibi & Khalid F. Almutairi & Fahad N. Albarakah & Fahad Alotaibi & Ibrahim A. Ahmed, 2024. "Investigating the Interactive Effect of Arbuscular Mycorrhizal Fungi and Different Chelating Agents (EDTA and DTPA) with Different Plant Species on Phytoremediation of Contaminated Soil," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    20. Georgios Kalyvas & Gerasimos Tsitselis & Dionisios Gasparatos & Ioannis Massas, 2018. "Efficacy of EDTA and Olive Mill Wastewater to Enhance As, Pb, and Zn Phytoextraction by Pteris vittata L. from a Soil Heavily Polluted by Mining Activities," Sustainability, MDPI, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4508-:d:538483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.