IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9936-d640108.html
   My bibliography  Save this article

Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Plant Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil

Author

Listed:
  • Udai B. Singh

    (Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India
    These authors have contributed equally to this work and shared first authorship.)

  • Deepti Malviya

    (Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India
    These authors have contributed equally to this work and shared first authorship.)

  • Shailendra Singh

    (Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India)

  • Prakash Singh

    (Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural University, Dumraon, Buxar 802136, India)

  • Abhijeet Ghatak

    (Department of Plant Pathology, Bihar Agricultural University, Sabour, Bhagalpur 813210, India)

  • Muhammad Imran

    (Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India)

  • Jai P. Rai

    (Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India)

  • Rajiv K. Singh

    (ICAR-Indian Institute of Seed Sciences, Kushmaur, Maunath Bhanjan 275103, India
    Author’s present address: Division of Agronomy, Indian Agricultural Research Institute, PUSA, New Delhi 110012, India.)

  • Madhab C. Manna

    (Soil Biology Division, ICAR-Indian Institute of Soil Science, Bhopal 462038, India)

  • Arun K. Sharma

    (Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India)

  • Anil K. Saxena

    (Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India)

Abstract

A wide range of root-associated mutualistic microorganisms have been successfully applied and documented in the past for growth promotion, biofertilization, biofortification and biotic and abiotic stress amelioration in major crops. These microorganisms include nitrogen fixers, nutrient mobilizers, bio-remediators and bio-control agents. The present study aimed to demonstrate the impact of salt-tolerant compatible microbial inoculants on plant growth; Zn biofortification and yield of wheat ( Triticum aestivum L.) crops grown in saline-sodic soil and insight of the mechanisms involved therein are being shared through this paper. Field experiments were conducted to evaluate the effects of Trichoderma harzianum UBSTH-501 and Bacillus amyloliquefaciens B-16 on wheat grown in saline-sodic soil at Research Farm, ICAR-Indian Institute of Seed Sciences, Kushmaur, India. The population of rhizosphere-associated microorganisms changed dramatically upon inoculation of the test microbes in the wheat rhizosphere. The co-inoculation induced a significant accumulation of proline and total soluble sugar in wheat at 30, 60, 90 and 120 days after sowing as compared to the uninoculated control. Upon quantitative estimation of organic solutes and antioxidant enzymes, these were found to have increased significantly in co-inoculated plants under salt-stressed conditions. The application of microbial inoculants enhanced the salt tolerance level significantly in wheat plants grown in saline-sodic soil. A significant increase in the uptake and translocation of potassium (K + ) and calcium (Ca 2+ ) was observed in wheat co-inoculated with the microbial inoculants, while a significant reduction in sodium (Na + ) content was recorded in plants treated with both the bio-agents when compared with the respective uninoculated control plants. Results clearly indicated that significantly higher expression of TaHKT-1 and TaNHX1 in the roots enhances salt tolerance effectively by maintaining the Na + /K + balance in the plant tissue. It was also observed that co-inoculation of the test inoculants increased the expression of ZIP transporters (2–3.5-folds) which ultimately led to increased biofortification of Zn in wheat grown in saline-sodic soil. Results suggested that co-inoculation of T. harzianum UBSTH-501 and B. amyloliquefaciens B-16 not only increased plant growth but also improved total grain yield along with a reduction in seedling mortality in the early stages of crop growth. In general, the present investigation demonstrated the feasibility of using salt-tolerant rhizosphere microbes for plant growth promotion and provides insights into plant-microbe interactions to ameliorate salt stress and increase Zn bio-fortification in wheat.

Suggested Citation

  • Udai B. Singh & Deepti Malviya & Shailendra Singh & Prakash Singh & Abhijeet Ghatak & Muhammad Imran & Jai P. Rai & Rajiv K. Singh & Madhab C. Manna & Arun K. Sharma & Anil K. Saxena, 2021. "Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Plant Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil," IJERPH, MDPI, vol. 18(18), pages 1-25, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9936-:d:640108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9936/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9936/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. Q. Ma & K. M. Komar & Cong Tu & Weihua Zhang & Yong Cai & E. D. Kennelley, 2001. "A fern that hyperaccumulates arsenic," Nature, Nature, vol. 411(6836), pages 438-438, May.
    2. Lena Q. Ma & Kenneth M. Komar & Cong Tu & Weihua Zhang & Yong Cai & Elizabeth D. Kennelley, 2001. "A fern that hyperaccumulates arsenic," Nature, Nature, vol. 409(6820), pages 579-579, February.
    3. Shailendra Singh & Udai B. Singh & Mala Trivedi & Pramod Kumar Sahu & Surinder Paul & Diby Paul & Anil Kumar Saxena, 2019. "Seed Biopriming with Salt-Tolerant Endophytic Pseudomonas geniculata -Modulated Biochemical Responses Provide Ecological Fitness in Maize ( Zea mays L.) Grown in Saline Sodic Soil," IJERPH, MDPI, vol. 17(1), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saud S. Aloud & Khaled D. Alotaibi & Khalid F. Almutairi & Fahad N. Albarakah, 2022. "Assessment of Heavy Metals Accumulation in Soil and Native Plants in an Industrial Environment, Saudi Arabia," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    2. Veronika Zemanová & Daniela Pavlíková & Milan Novák & Petre I. Dobrev & Tomáš Matoušek & Václav Motyka & Milan Pavlík, 2022. "Arsenic-induced response in roots of arsenic-hyperaccumulator fern and soil enzymatic activity changes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(5), pages 213-222.
    3. Jin Wu & Ruitao Jia & Hao Xuan & Dasheng Zhang & Guoming Zhang & Yuting Xiao, 2022. "Priority Soil Pollution Management of Contaminated Site Based on Human Health Risk Assessment: A Case Study in Southwest China," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    4. Nurfitri Abdul Gafur & Masayuki Sakakibara & Satoru Komatsu & Sakae Sano & Koichiro Sera, 2022. "Environmental Survey of the Distribution and Metal Contents of Pteris vittata in Arsenic–Lead–Mercury-Contaminated Gold Mining Areas along the Bone River in Gorontalo Province, Indonesia," IJERPH, MDPI, vol. 19(1), pages 1-13, January.
    5. Lenka Štofejová & Juraj Fazekaš & Danica Fazekašová, 2021. "Analysis of Heavy Metal Content in Soil and Plants in the Dumping Ground of Magnesite Mining Factory Jelšava-Lubeník (Slovakia)," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    6. Protima Dhar & Kazuhiro Kobayashi & Kazuhiro Ujiie & Fumihiko Adachi & Junko Kasuga & Ikuko Akahane & Tomohito Arao & Shingo Matsumoto, 2020. "The Increase in the Arsenic Concentration in Brown Rice Due to High Temperature during the Ripening Period and Its Reduction by Silicate Material Treatment," Agriculture, MDPI, vol. 10(7), pages 1-16, July.
    7. Cristina Hegedus & Simona-Nicoleta Pașcalău & Luisa Andronie & Ancuţa-Simona Rotaru & Alexandra-Antonia Cucu & Daniel Severus Dezmirean, 2023. "The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction," Agriculture, MDPI, vol. 13(3), pages 1-49, March.
    8. Agnieszka Dradrach & Anna Karczewska & Katarzyna Szopka & Karolina Lewińska, 2020. "Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland," IJERPH, MDPI, vol. 17(9), pages 1-16, May.
    9. Chen Li & Xiaohui Ji & Xuegang Luo, 2019. "Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018," IJERPH, MDPI, vol. 16(23), pages 1-28, November.
    10. R.W. Feng & C.Y. Wei, 2012. "Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(3), pages 105-110.
    11. Małgorzata Szostek & Natalia Matłok & Patryk Kosowski & Anna Ilek & Maciej Balawejder, 2023. "Changes in Speciation and Bioavailability of Trace Elements in Sewage Sludge after the Ozonation Process," Agriculture, MDPI, vol. 13(4), pages 1-14, March.
    12. Alexandra D. Solomou & Rafaelia Germani & Nikolaos Proutsos & Michaela Petropoulou & Petros Koutroumpilas & Christos Galanis & Georgios Maroulis & Antonios Kolimenakis, 2022. "Utilizing Mediterranean Plants to Remove Contaminants from the Soil Environment: A Short Review," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    13. Farahat S. Moghanm & Antar El-Banna & Mohamed A. El-Esawi & Mohamed M. Abdel-Daim & Ahmed Mosa & Khaled A.A. Abdelaal, 2020. "Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    14. Shuang Song & Qianqian Sheng & Zunling Zhu & Yanli Liu, 2023. "Application of Multi-Plant Symbiotic Systems in Phytoremediation: A Bibliometric Review," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    15. Kinga Drzewiecka & Przemysław Gawrysiak & Magdalena Woźniak & Michał Rybak, 2023. "Metal Accumulation and Tolerance of Energy Willow to Copper and Nickel under Simulated Drought Conditions," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    16. Ning Han & Chongyang Yang & Shunya Shimomura & Chihiro Inoue & Mei-Fang Chien, 2022. "Empirical Evidence of Arsenite Oxidase Gene as an Indicator Accounting for Arsenic Phytoextraction by Pteris vittata," IJERPH, MDPI, vol. 19(3), pages 1-11, February.
    17. Mengting Lin & Sairu Ma & Jie Liu & Xusheng Jiang & Demin Dai, 2024. "Remediation of Arsenic and Cadmium Co-Contaminated Soil: A Review," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
    18. Dongping Shi & Chengyu Xie & Jinmiao Wang & Lichun Xiong, 2021. "Changes in the Structures and Directions of Heavy Metal-Contaminated Soil Remediation Research from 1999 to 2020: A Bibliometric & Scientometric Study," IJERPH, MDPI, vol. 18(14), pages 1-14, July.
    19. Saud S. Aloud & Khaled D. Alotaibi & Khalid F. Almutairi & Fahad N. Albarakah & Fahad Alotaibi & Ibrahim A. Ahmed, 2024. "Investigating the Interactive Effect of Arbuscular Mycorrhizal Fungi and Different Chelating Agents (EDTA and DTPA) with Different Plant Species on Phytoremediation of Contaminated Soil," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    20. Georgios Kalyvas & Gerasimos Tsitselis & Dionisios Gasparatos & Ioannis Massas, 2018. "Efficacy of EDTA and Olive Mill Wastewater to Enhance As, Pb, and Zn Phytoextraction by Pteris vittata L. from a Soil Heavily Polluted by Mining Activities," Sustainability, MDPI, vol. 10(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9936-:d:640108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.