IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p2147-d330875.html
   My bibliography  Save this article

Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources

Author

Listed:
  • Farahat S. Moghanm

    (Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr el-sheikh 33516, Egypt)

  • Antar El-Banna

    (Genetics Department, Faculty of Agriculture, Kafrelsheikh University, Kafr el-sheikh 33516, Egypt)

  • Mohamed A. El-Esawi

    (Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
    Sainsbury Laboratory, University of Cambridge, Cambridge CB21LR, UK)

  • Mohamed M. Abdel-Daim

    (Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
    Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt)

  • Ahmed Mosa

    (Soils Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt)

  • Khaled A.A. Abdelaal

    (EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh 33516, Egypt)

Abstract

Potentially toxic elements (PTEs)-induced genotoxicity on aquatic plants is still an open question. Herein, a single clone from a population of water hyacinth covering a large distribution area of Nile River (freshwater) was transplanted in two drainage water resources to explore the hazardous effect of PTEs on molecular, biochemical and anatomical characters of plants compared to those grown in freshwater. Inductivity Coupled Plasma (ICP) analysis indicated that PTEs concentrations in water resources were relatively low in most cases. However, the high tendency of water hyacinth to bio-accumulate and bio-magnify PTEs maximized their concentrations in plant samples (roots in particular). A Random Amplified Polymorphic DNA (RAPD) assay showed the genotoxic effects of PTEs on plants grown in drainage water. PTEs accumulation caused substantial alterations in DNA profiles including the presence or absence of certain bands and even the appearance of new bands. Plants grown in drainage water exhibited several mutations on the electrophoretic profiles and banding pattern of total protein, especially proteins isolated from roots. Several anatomical deteriorations were observed on PTEs-stressed plants including reductions in the thickness of epidermis, cortex and endodermis as well as vascular cylinder diameter. The research findings of this investigation may provide some new insights regarding molecular, biochemical and anatomical responses of water hyacinth grown in drainage water resources.

Suggested Citation

  • Farahat S. Moghanm & Antar El-Banna & Mohamed A. El-Esawi & Mohamed M. Abdel-Daim & Ahmed Mosa & Khaled A.A. Abdelaal, 2020. "Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2147-:d:330875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/2147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/2147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rezania, Shahabaldin & Ponraj, Mohanadoss & Din, Mohd Fadhil Md & Songip, Ahmad Rahman & Sairan, Fadzlin Md & Chelliapan, Shreeshivadasan, 2015. "The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 943-954.
    2. L. Q. Ma & K. M. Komar & Cong Tu & Weihua Zhang & Yong Cai & E. D. Kennelley, 2001. "A fern that hyperaccumulates arsenic," Nature, Nature, vol. 411(6836), pages 438-438, May.
    3. Lena Q. Ma & Kenneth M. Komar & Cong Tu & Weihua Zhang & Yong Cai & Elizabeth D. Kennelley, 2001. "A fern that hyperaccumulates arsenic," Nature, Nature, vol. 409(6820), pages 579-579, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayman El-Ghamry & El-Sayed El-Naggar & Abdallah M. Elgorban & Bin Gao & Zahoor Ahmad & Ahmed Mosa, 2021. "Double Coating as a Novel Technology for Controlling Urea Dissolution in Soil: A Step toward Improving the Sustainability of Nitrogen Fertilization Approaches," Sustainability, MDPI, vol. 13(19), pages 1-13, September.
    2. Khaled Abdelaal & Moodi Saham Alsubeie & Yaser Hafez & Amero Emeran & Farahat Moghanm & Salah Okasha & Reda Omara & Mohammed A. Basahi & Doaa Bahaa Eldin Darwish & Mohamed F. M. Ibrahim & Ahmed Abou E, 2022. "Physiological and Biochemical Changes in Vegetable and Field Crops under Drought, Salinity and Weeds Stresses: Control Strategies and Management," Agriculture, MDPI, vol. 12(12), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiahui Lin & Hengyi Dai & Jing Yuan & Caixian Tang & Bin Ma & Jianming Xu, 2024. "Arsenic-induced enhancement of diazotrophic recruitment and nitrogen fixation in Pteris vittata rhizosphere," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Saud S. Aloud & Khaled D. Alotaibi & Khalid F. Almutairi & Fahad N. Albarakah, 2022. "Assessment of Heavy Metals Accumulation in Soil and Native Plants in an Industrial Environment, Saudi Arabia," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    3. Veronika Zemanová & Daniela Pavlíková & Milan Novák & Petre I. Dobrev & Tomáš Matoušek & Václav Motyka & Milan Pavlík, 2022. "Arsenic-induced response in roots of arsenic-hyperaccumulator fern and soil enzymatic activity changes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 68(5), pages 213-222.
    4. Jin Wu & Ruitao Jia & Hao Xuan & Dasheng Zhang & Guoming Zhang & Yuting Xiao, 2022. "Priority Soil Pollution Management of Contaminated Site Based on Human Health Risk Assessment: A Case Study in Southwest China," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    5. Nurfitri Abdul Gafur & Masayuki Sakakibara & Satoru Komatsu & Sakae Sano & Koichiro Sera, 2022. "Environmental Survey of the Distribution and Metal Contents of Pteris vittata in Arsenic–Lead–Mercury-Contaminated Gold Mining Areas along the Bone River in Gorontalo Province, Indonesia," IJERPH, MDPI, vol. 19(1), pages 1-13, January.
    6. Udai B. Singh & Deepti Malviya & Shailendra Singh & Prakash Singh & Abhijeet Ghatak & Muhammad Imran & Jai P. Rai & Rajiv K. Singh & Madhab C. Manna & Arun K. Sharma & Anil K. Saxena, 2021. "Salt-Tolerant Compatible Microbial Inoculants Modulate Physio-Biochemical Responses Enhance Plant Growth, Zn Biofortification and Yield of Wheat Grown in Saline-Sodic Soil," IJERPH, MDPI, vol. 18(18), pages 1-25, September.
    7. Lenka Štofejová & Juraj Fazekaš & Danica Fazekašová, 2021. "Analysis of Heavy Metal Content in Soil and Plants in the Dumping Ground of Magnesite Mining Factory Jelšava-Lubeník (Slovakia)," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    8. Protima Dhar & Kazuhiro Kobayashi & Kazuhiro Ujiie & Fumihiko Adachi & Junko Kasuga & Ikuko Akahane & Tomohito Arao & Shingo Matsumoto, 2020. "The Increase in the Arsenic Concentration in Brown Rice Due to High Temperature during the Ripening Period and Its Reduction by Silicate Material Treatment," Agriculture, MDPI, vol. 10(7), pages 1-16, July.
    9. Cristina Hegedus & Simona-Nicoleta Pașcalău & Luisa Andronie & Ancuţa-Simona Rotaru & Alexandra-Antonia Cucu & Daniel Severus Dezmirean, 2023. "The Journey of 1000 Leagues towards the Decontamination of the Soil from Heavy Metals and the Impact on the Soil–Plant–Animal–Human Chain Begins with the First Step: Phytostabilization/Phytoextraction," Agriculture, MDPI, vol. 13(3), pages 1-49, March.
    10. Agnieszka Dradrach & Anna Karczewska & Katarzyna Szopka & Karolina Lewińska, 2020. "Accumulation of Arsenic by Plants Growing in the Sites Strongly Contaminated by Historical Mining in the Sudetes Region of Poland," IJERPH, MDPI, vol. 17(9), pages 1-16, May.
    11. Chen Li & Xiaohui Ji & Xuegang Luo, 2019. "Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018," IJERPH, MDPI, vol. 16(23), pages 1-28, November.
    12. R.W. Feng & C.Y. Wei, 2012. "Antioxidative mechanisms on selenium accumulation in Pteris vittata L., a potential selenium phytoremediation plant," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(3), pages 105-110.
    13. Małgorzata Szostek & Natalia Matłok & Patryk Kosowski & Anna Ilek & Maciej Balawejder, 2023. "Changes in Speciation and Bioavailability of Trace Elements in Sewage Sludge after the Ozonation Process," Agriculture, MDPI, vol. 13(4), pages 1-14, March.
    14. Alexandra D. Solomou & Rafaelia Germani & Nikolaos Proutsos & Michaela Petropoulou & Petros Koutroumpilas & Christos Galanis & Georgios Maroulis & Antonios Kolimenakis, 2022. "Utilizing Mediterranean Plants to Remove Contaminants from the Soil Environment: A Short Review," Agriculture, MDPI, vol. 12(2), pages 1-19, February.
    15. Shuang Song & Qianqian Sheng & Zunling Zhu & Yanli Liu, 2023. "Application of Multi-Plant Symbiotic Systems in Phytoremediation: A Bibliometric Review," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    16. Kinga Drzewiecka & Przemysław Gawrysiak & Magdalena Woźniak & Michał Rybak, 2023. "Metal Accumulation and Tolerance of Energy Willow to Copper and Nickel under Simulated Drought Conditions," Sustainability, MDPI, vol. 15(17), pages 1-14, August.
    17. Ning Han & Chongyang Yang & Shunya Shimomura & Chihiro Inoue & Mei-Fang Chien, 2022. "Empirical Evidence of Arsenite Oxidase Gene as an Indicator Accounting for Arsenic Phytoextraction by Pteris vittata," IJERPH, MDPI, vol. 19(3), pages 1-11, February.
    18. Mengting Lin & Sairu Ma & Jie Liu & Xusheng Jiang & Demin Dai, 2024. "Remediation of Arsenic and Cadmium Co-Contaminated Soil: A Review," Sustainability, MDPI, vol. 16(2), pages 1-15, January.
    19. Dongping Shi & Chengyu Xie & Jinmiao Wang & Lichun Xiong, 2021. "Changes in the Structures and Directions of Heavy Metal-Contaminated Soil Remediation Research from 1999 to 2020: A Bibliometric & Scientometric Study," IJERPH, MDPI, vol. 18(14), pages 1-14, July.
    20. Saud S. Aloud & Khaled D. Alotaibi & Khalid F. Almutairi & Fahad N. Albarakah & Fahad Alotaibi & Ibrahim A. Ahmed, 2024. "Investigating the Interactive Effect of Arbuscular Mycorrhizal Fungi and Different Chelating Agents (EDTA and DTPA) with Different Plant Species on Phytoremediation of Contaminated Soil," Sustainability, MDPI, vol. 16(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:2147-:d:330875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.