IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4266-d534456.html
   My bibliography  Save this article

Developing Generalised Equation for the Calculation of PayBack Period for Rainwater Harvesting Systems

Author

Listed:
  • Monzur A. Imteaz

    (Department of Civil and Construction Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Maryam Bayatvarkeshi

    (Department of Soil Science, Malayer University, Malayer 65719-95863, Iran)

  • Md. Rezaul Karim

    (Department of Civil and Environmental Engineering, Islamic University of Technology (IUT), Board Bazar, Gazipur 1700, Bangladesh)

Abstract

Many end-users for the stormwater harvesting systems are reluctant in implementing the system due to uncertainties of the potential returns for their investment for such system. A common practice of presenting potential benefit of a certain investment is through calculation of payback period using net annual benefit from the system. Traditional practice of doing such payback period analysis for rainwater tanks was considering individual building/roof, system volume, and specific investment cost. It is not feasible to conduct such analysis for each and every rainwater harvesting system installed in different buildings. To overcome this tedious practice, this study presents development of a generalised equation for the estimation of payback period for rainwater tanks based on roof area, initial cost, and rate of return. Based on an earlier study, several payback periods were calculated for different roof sizes, initial costs, and rate of return. It was found that all these variables can be correlated and embedded into a base equation of power function. Final developed equation results were compared with the payback periods calculated through traditional practice considering net annual savings and net present value of cumulative savings. It is found that the developed equation can estimate payback periods with very good accuracies; for all the selected internal rates of return correlation values ranging from 0.99 to 1.0 were achieved. Corresponding coefficient of determinations varied from 0.988 to 0.993. Furthermore, it is found that for a fixed roof area and rate of return, the payback period is having a power relationship (having an exponent less than 1.0) with the initial cost.

Suggested Citation

  • Monzur A. Imteaz & Maryam Bayatvarkeshi & Md. Rezaul Karim, 2021. "Developing Generalised Equation for the Calculation of PayBack Period for Rainwater Harvesting Systems," Sustainability, MDPI, vol. 13(8), pages 1-11, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4266-:d:534456
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna Musz-Pomorska & Marcin K. Widomski & Justyna Gołębiowska, 2020. "Financial Sustainability of Selected Rain Water Harvesting Systems for Single-Family House under Conditions of Eastern Poland," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
    2. C. Matos & I. Bentes & C. Santos & M. Imteaz & S. Pereira, 2015. "Economic Analysis of a Rainwater Harvesting System in a Commercial Building," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 3971-3986, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo Novais Istchuk & Enedir Ghisi, 2022. "Financial Feasibility Analysis of Residential Rainwater Harvesting in Maringá, Brazil," Sustainability, MDPI, vol. 14(19), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin K. Widomski & Anna Musz-Pomorska, 2023. "Sustainable Development of Rural Areas in Poland since 2004 in the Light of Sustainability Indicators," Land, MDPI, vol. 12(2), pages 1-29, February.
    2. Artur Pawłowski & Agnieszka Żelazna & Jarosław Żak, 2023. "Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA," Energies, MDPI, vol. 16(9), pages 1-15, April.
    3. Monzur Alam Imteaz & Vassiliki Boulomytis, 2022. "Improvement of Rainwater Harvesting Analysis Through an Hourly Timestep Model in Comparison with a Daily Timestep Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2611-2622, June.
    4. Manal Hamam & Daniela Spina & Roberta Selvaggi & Gabriella Vindigni & Gioacchino Pappalardo & Mario D'Amico & Gaetano Chinnici, 2023. "Financial sustainability in agri-food supply chains: A system approach," Economia agro-alimentare, FrancoAngeli Editore, vol. 25(2), pages 135-154.
    5. Hamam, Manal & Spina, Daniela & Selvaggi, Roberta & Vindigni, Gabriella & Pappalardo, Gioacchino & D’Amico, Mario & Chinnici, Gaetano, 2023. "Financial sustainability in agri-food supply chains: A system approach," Economia agro-alimentare / Food Economy, Italian Society of Agri-food Economics/Società Italiana di Economia Agro-Alimentare (SIEA), vol. 25(2), October.
    6. Karim, Md. Rezaul & Bashar, Mohammad Zobair Ibne & Imteaz, Monzur Alam, 2015. "Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 61-67.
    7. Suzanne Dallman & Anita M. Chaudhry & Misgana K. Muleta & Juneseok Lee, 2016. "The Value of Rain: Benefit-Cost Analysis of Rainwater Harvesting Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4415-4428, September.
    8. Mariana Marchioni & Anita Raimondi & Maria Gloria Chiano & Umberto Sanfilippo & Stefano Mambretti & Gianfranco Becciu, 2023. "Costs-benefit Analysis for the use of Shallow Groundwater as non-conventional Water Resource," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2125-2142, March.
    9. Blanca Itzany Rivera Vázquez & Edith Rosalba Salcedo Sánchez & Juan Manuel Esquivel Martínez & Miguel Ángel Gómez Albores & Felipe Gómez Noguez & Carina Gutiérrez Flores & Oscar Talavera Mendoza, 2023. "Use of Analytic Hierarchy Process Method to Identify Potential Rainwater Harvesting Sites: Design and Financial Strategies in Taxco de Alarcón, Southern Mexico," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    10. Cristina Matos & Isabel Bentes & Cristina Santos, 2024. "Rainwater Harvesting System for Industrial Buildings: The Case Study of Continental Advanced Antenna, Vila Real, Portugal," Sustainability, MDPI, vol. 16(11), pages 1-12, May.
    11. Moniruzzaman, Muhammad & Imteaz, Monzur A., 2017. "Generalized equations, climatic and spatial variabilities of potential rainwater savings: A case study for Sydney," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 139-156.
    12. Agnieszka Żelazna & Justyna Gołębiowska & Agata Zdyb & Artur Pawłowski, 2020. "A Hybrid vs. On-Grid Photovoltaic System: Multicriteria Analysis of Environmental, Economic, and Technical Aspects in Life Cycle Perspective," Energies, MDPI, vol. 13(15), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4266-:d:534456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.