IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i19p12859-d936923.html
   My bibliography  Save this article

Financial Feasibility Analysis of Residential Rainwater Harvesting in Maringá, Brazil

Author

Listed:
  • Rodrigo Novais Istchuk

    (Laboratory of Energy Efficiency in Buildings, Department of Civil Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil)

  • Enedir Ghisi

    (Laboratory of Energy Efficiency in Buildings, Department of Civil Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil)

Abstract

Rainwater harvesting (RWH) systems are key solutions to improve water resource management in cities, and financial feasibility is essential for their diffusion. Moreover, studies about rainwater often adopt diverse design approaches, leading to incompatible results for direct comparison. This study introduces a categorised item-by-item outlay procedure and evaluates indirect (gravity) and direct (pressuriser) rainwater distribution schemes. Computer simulations were used to design 54 generic RWH system scenarios in Maringá based on a range of design variables. For each scenario, a monthly cost–benefit balance was built, and discounted payback, net present value, and internal rate of return were obtained. Similar outlays were obtained for direct and indirect rainwater distribution schemes (∆ = BRL 21.81) with an average of BRL 13,484.87 among all scenarios. Average operational costs were estimated at BRL 1.31/month.m 3 of rainwater demand. On average, paybacks of 14.7 years and internal rates of return of 0.99% per month were obtained among feasible scenarios. Like in other studies, financial feasibility indicators presented significant correlations (0.88 ≤ R 2 ≤ 0.94) with rainwater demand. The initial outlay distribution proposed herein provides an objective reference for result comparison among similar studies. Similar results for both rainwater distribution schemes point towards investigating alternative technical solutions for RWH systems.

Suggested Citation

  • Rodrigo Novais Istchuk & Enedir Ghisi, 2022. "Financial Feasibility Analysis of Residential Rainwater Harvesting in Maringá, Brazil," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12859-:d:936923
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/19/12859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/19/12859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geraldi, Matheus Soares & Ghisi, Enedir, 2017. "Influence of the length of rainfall time series on rainwater harvesting systems: A case study in Berlin," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 169-180.
    2. Nandi, Santosh & Gonela, Vinay, 2022. "Rainwater harvesting for domestic use: A systematic review and outlook from the utility policy and management perspectives," Utilities Policy, Elsevier, vol. 77(C).
    3. Enedir Ghisi & Pedro Schondermark, 2013. "Investment Feasibility Analysis of Rainwater Use in Residences," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2555-2576, May.
    4. Monzur A. Imteaz & Maryam Bayatvarkeshi & Md. Rezaul Karim, 2021. "Developing Generalised Equation for the Calculation of PayBack Period for Rainwater Harvesting Systems," Sustainability, MDPI, vol. 13(8), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iman Saeedi & Mohsen Goodarzi, 2020. "Rainwater harvesting system: a sustainable method for landscape development in semiarid regions, the case of Malayer University campus in Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1579-1598, February.
    2. Dumit Gómez, Yapur & Teixeira, Luiza Girard, 2017. "Residential rainwater harvesting: Effects of incentive policies and water consumption over economic feasibility," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 56-67.
    3. Rambonilaza, Tina & Rulleau, Bénédicte & Assouan, Epiphane, 2023. "On sharing the costs of public drinking water infrastructure renewal among users with different preferences," Utilities Policy, Elsevier, vol. 85(C).
    4. Igor Catão Martins Vaz & Rodrigo Novais Istchuk & Tânia Mara Sebben Oneda & Enedir Ghisi, 2023. "Sustainable Rainwater Management and Life Cycle Assessment: Challenges and Perspectives," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    5. Tatek Temesgen & Mooyoung Han & Hyunju Park & Tschung-il Kim, 2016. "Policies and Strategies to Overcome Barriers to Rainwater Harvesting for Urban Use in Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5205-5215, November.
    6. Xingqi Zhang & Maochuan Hu, 2014. "Effectiveness of Rainwater Harvesting in Runoff Volume Reduction in a Planned Industrial Park, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 671-682, February.
    7. Flora Silva & Cristina Sousa Coutinho Calheiros & António Albuquerque & Jorge Pedro Lopes & Ana Maria Antão-Geraldes, 2023. "Technical and Financial Feasibility Analysis of Rainwater Harvesting Using Conventional or Green Roofs in an Industrial Building," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
    8. Gabriela Cristina Ribeiro Pacheco & Marcus André Siqueira Campos, 2019. "Real Options Analysis as an Economic Evaluation Method for Rainwater Harvesting Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4401-4415, September.
    9. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.
    10. Silva, Cristina Matos & Sousa, Vitor & Carvalho, Nuno Vaz, 2015. "Evaluation of rainwater harvesting in Portugal: Application to single-family residences," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 21-34.
    11. Nandi, Santosh & Gonela, Vinay, 2022. "Rainwater harvesting for domestic use: A systematic review and outlook from the utility policy and management perspectives," Utilities Policy, Elsevier, vol. 77(C).
    12. Josef Navrátil & Petr Klusáček & Stanislav Martinát & Petr Dvořák, 2021. "Emergence of Centralized (Collective) and Decentralized (Individual) Environmentally Friendly Solutions during the Regeneration of a Residential Building in a Post-Socialist City," Land, MDPI, vol. 10(5), pages 1-21, May.
    13. Mokhtar Guizani, 2016. "Storm Water Harvesting in Saudi Arabia: a Multipurpose Water Management Alternative," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1819-1833, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:19:p:12859-:d:936923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.